
University of Colorado, Department of Physics

PHYS3320, Spring 2016, HW 6

due Fri, Feb 26 by 5:00pm, in the mailbox at the entrance to the physics helproom

1. [Total: 20 pts]
Consider our standard coax cable as a wire of infinite length and radius a surrounded by
a thin conducting cylinder, coaxial with the wire, with inner radius b and outer radius c.
Assume a ≪ b and (c − b) ≪ b (i.e. thin shell and wire). We have previously found the
self-inductance per length of the cable. Now let’s investigate the induced E-field and the
displacement current Jd for a particular time-dependent current I(t) = I0 cos(ωt), which
flows along the wire, and a correspondent current I(t) flows in the opposite direction on
the outer cylinder. Assume that the currents are identical in magnitude at each moment
in time, and the changes in current are slow.

a) [4 pts] Find B(s, t) in the ’coax region’ (a < s < b) where s is the usual radial
coordinate, and the current in the wire is I0 in the +z direction at t = 0. (Note:
Assume we are ’quasistatic’ here. Thus, assume that the changes in the electric field
are small. We will later in part d) see whether this is a good assumption. Should be
a familiar problem.)

b) [6 pts] Find E(s, t) in the ’coax region’ (a < s < b). Assume that the magnitude of
E → 0 as s → ∞.

c) [6 pts] Find the displacement current density Jd in the ’coax region’ (a < s < b) for
this electric field E, and integrate it to get the total displacement current Id.

d) [4 pts] Using, physically reasonable numbers for a real coax (say a = 1 mm and b = 1
cm), determine the frequency ω for which Id finally equals 1% of I0. Briefly, comment
on the following aspects: What sort of frequency is this? Do we need to worry about
the displacement current for lower and higher frequencies than this?



2. [Total: 8 pts]
Consider the model for a parallel-plate capacitor, shown in Fig. 3, in which thin wires
connect to the centers of the plates. The current I is constant, the radius of the capacitor
plates is a and the separation of the plates is w ≪ a. Assume that the current flows out
over the plates in such a way that the surface charge is uniform, at any given time, and is
zero at t = 0.

a) [3 pts] Find the electric field between the plates, as a function of t.

b) [5 pts] Find the displacement current through a circle of radius s in the plane midway
between the plates. Using the circle as your ’Amperian loop’, and the flat surface
that spans it, find the magnetic field at a distance s from the axis.
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3. [Total: 14 pts]
A capacitor with circular plates of radius R seperated by a distance d ≪ R is being charged
by a steady current I. The plates are sufficiently close that edge effects can be ignored.

a) [4 pts] Compute the magnitude of the B-field between the plates at all distances r

from the center of the plates (i.e. r < R and r > R). Sketch the magnitude of the
B-field vs. R.

b) [4 pts] Compute the Poynting vector S (magnitude and direction) on the rim of the
capacitor, between the plates, at r = R. (The ’rim’ is the ribbon of area at r = R

between the plates; see Figure 1).

c) [6 pts] Show that the rate at which the capacitor’s stored energy is increasing is equal
to the rate at which field energy is entering through the rim,

∫
rim

S · dA.
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4. [Total: 12 pts, each part: 3 pts]
Consider a very long solenoid of length L, radius r, and turns per length n. The current
I in the solenoid is linearly ramped from I = 0 to I = I0 over a period of t0 as shown in
the graph in Figure 2.

a) Integrate the magnetic field energy density to derive a formula for the total field
energy stored in the solenoid at times t > t0.

b) Solve for the electric field everywhere at times 0 < t < t0.

c) Solve for the Poynting vector S (direction and magnitude) at r = R (just inside the
walls of the solenoid) as a function of time.

d) Show that the total field energy/time passing from the walls of the solenoid into its
interior, when integrated from t = 0 to t = t0, gives the same total energy as you
computed in part a).
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