University of Colorado, Department of Physics PHYS3320, Spring 2016, HW 8

due Fri, Mar 11 by 5:00pm, in the mailbox at the entrance to the physics helproom

1. [Total: 4 pts ; each part: 2 pts]
a) If you add two sinusoidal traveling waves, with the same angular frequency and wavelength, but traveling in opposite directions, you get a standing wave. Use complex notation for waves to show that the sum $A \cos (k x-\omega t)+A \cos (k x+\omega t)$ is a standing wave. Make a sketch of this wave, showing its shape at two different times and indicate on the sketch where the nodes and anti-nodes are.
b) Consider the sum of two traveling waves,

$$
\begin{equation*}
f_{3}(x, t)=A_{1} \cos \left(k x-\omega t+\delta_{1}\right)+A_{2} \cos \left(k x-\omega t+\delta_{2}\right) . \tag{1}
\end{equation*}
$$

In class we used complex notation to show that $f_{3}(x, t)=A_{3} \cos \left(k x-\omega t+\delta_{3}\right)$. Find A_{3} and δ_{3} in terms of A_{1}, A_{2}, δ_{1} and δ_{2}.
2. [Total: 10 pts]

Consider the electric field given by $\mathbf{E}(\mathbf{r}, t)=E_{0} \cos (k(x-c t)) \hat{\mathbf{y}}$, where k and c are known constants.
a) [2 pts] What is the charge density $\rho(\mathbf{r}, t)$ associated with this \mathbf{E}-field?
b) $[2 \mathrm{pts}]$ What are the units of k and c ?
c) [2 pts] Come up with the simplest possible \mathbf{B}-field that satisfies Faraday's law, given this E-field.
d) [4 pts] Then, check for your result from part c) that the remaining free-space Maxwell equations are satisfied, if you make the right choice for the constant c. What is the current density $\mathbf{J}(\mathbf{r}, t)$ associated with these \mathbf{E} - and \mathbf{B}-fields?
3. [Total: 30 pts]

Consider a 3D electromagnetic wave in vacuum, described in the complex form by $\tilde{\mathbf{E}}=$ $\tilde{\mathbf{E}}_{0} \exp (i(\mathbf{k} \cdot \mathbf{r}-\omega t))$, in which $\tilde{\mathbf{E}}_{0}$ is a constant vector equal to $\tilde{E}_{0} \hat{\mathbf{x}}$ with $\tilde{E}_{0}=E_{0} \exp (i \pi / 2)$. Assume \mathbf{k} is the wave vector $k \hat{\mathbf{y}}$ and ω is the angular frequency. As usual, the real field is $\mathbf{E}=\operatorname{Re}[\tilde{\mathbf{E}}]$.
a) [3 pts$]$ Describe in words what this mathematical expression represents physically. You may use sketches, but if you do, they should be well described. Then answer the following questions:

- In which direction is the wave moving?
- What is the speed, wavelength, and period of the wave?
- What is the polarization of the wave? Does it change in time?
b) $[3 \mathrm{pts}]$
(i) Sketch the real field $\mathbf{E}(x=0, y, z=0, t=0)$ (a 2D plot with y as horizontal axis).
(ii) $\mathbf{E}(x=0, y=0, z=0, t)$ (a 2D plot with t as horizontal axis).
(iii) How is the field at $x=a$, i.e. $\mathbf{E}(x=a, y, z=0, t=0)$, different from the field at $x=0$?
c) [3 pts] Why is this called a plane wave? Where is (are) the plane(s)? Sketch or represent this in 3D.
d) $[4 \mathrm{pts}]$
(i) Find the associated magnetic field $\mathbf{B}(\mathbf{r}, t)$ for this plane electric wave.
(ii) Describe in words how \mathbf{B} compares/contrasts with \mathbf{E}.
(iii) Sketch the magnetic field, $\mathbf{B}(x=0, y, z=0, t=0)$ and $\mathbf{B}(x=0, y=0, z=0, t)$ indicating the field direction.
e) [3 pts] Calculate the energy density for these fields. Interpret the answer physically, i.e. make sense of them, including units, signs, directions, etc.
f) [3 pts] Calculate the Poynting vector for these fields. Interpret the answers physically, i.e. make sense of them, including units, signs, directions, etc.
g) [3 pts$]$ Calculate the momentum density for these fields. Interpret the answers physically, i.e. make sense of them, including units, signs, directions, etc.
h) [3 pts] Calculate the 3×3 Maxwell stress tensor for these fields. Interpret the answers physically, i.e. make sense of them, including units, signs, directions, etc.
i) [5 pts] Suppose now we add two plane waves, $\mathbf{E}_{1}(\mathbf{r}, t)=\mathbf{E}_{1} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\delta_{1}\right)$ and $\mathbf{E}_{2}(\mathbf{r}, t)=\mathbf{E}_{2} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\delta_{2}\right)$ and the amplitudes are $\mathbf{E}_{1}=E_{1} \hat{\mathbf{z}}$ and $\mathbf{E}_{2}=E_{2} \hat{\mathbf{z}}$. Use complex notations (taking the real part only at the every end) to find $\mathbf{E}_{\text {total }}(\mathbf{r}, t)=$ $\mathbf{E}_{1}(\mathbf{r}, t)+\mathbf{E}_{2}(\mathbf{r}, t)$ in the form $\mathbf{E}_{\text {total }}(\mathbf{r}, t)=\mathbf{E}_{\text {total }} \cos \left(\mathbf{k} \cdot \mathbf{r}-\omega t+\delta_{\text {total }}\right)$, giving the expressions for the total amplitude and phase shift in terms of those from $\mathbf{E}_{1}(\mathbf{r}, t)$ and $\mathbf{E}_{2}(\mathbf{r}, t)$. Explicitly check your answer in the special case $\delta_{1}=\delta_{2}$.

4. [6 pts] Consider a localized wave packet that satisfies the one-dimensional wave equation from a sum of sinusiodal waves using Fourier's integral method:

$$
f(x, t)=\int_{-\infty}^{\infty} A(k) \exp (i k(x-c t)) d k
$$

(Note that $A(k)$ is a complex-valued function of k.) Show that $f(x, t)$ satisfies the wave equation with velocity c.

