University of Colorado, Department of Physics PHYS3320, Spring 2016, HW 9

due Fri, Mar 18 by 5:00pm, in the mailbox at the entrance to the physics helproom

1. [Total: 8 pts]

Consider the following expression for the electric field of an electromagnetic plane wave:

$$
\tilde{\mathbf{E}}=E_{0}(1+i) \exp (i(a x-b y-\omega t)) \hat{\mathbf{z}}
$$

a) [3 pts] What are (i) the polarization direction and (ii) the propagation direction of the wave? Write down vectors.
b) [2 pts] Determine ω in terms of E_{0}, a, b and other known constants.
c) $[3 \mathrm{pts}]$ Write down the real electric field and the real magnetic field of the wave.
2. [Total: 10 pts]

A particle of charge q and mass m is held at the origin in the field of a 3D electromagnetic wave with angular frequency ω and phase constant $\delta=0$. The wave is polarized in $\hat{\mathbf{y}}$-direction and propagates in $\hat{\mathbf{z}}$-direction.
a) [3 pts$]$ Find the real electric field and the real magnetic field of the wave.
b) [3 pts] At $t=0$ the particle is released. What is the acceleration of the particle immediately after the instant of release? Give both the magnitude and the direction.
c) [4 pts] As the particle starts to move, it has the velocity \mathbf{u} in the direction of the initial acceleration. What is the acceleration of the particle now after it has some velocity after some short time Δt ? Assume that the particle is essentially still at the origin, and the time Δt is much less than $T / 4$, where T is the period of the electromagnetic wave.
3. [Total: 12 pts]

Consider a linear homogeneous material with no free charges and no free currents.
a) [4 pts] Derive the wave equations (i) for the electric field and (ii) for the magnetic field in such a material.
b) [2 pts$]$ Argue that complex plane waves solve these wave equations. What is the speed of these waves?
c) [4 pts] Derive (i) the relation between k and ω for a complex plane wave and (ii) the relation between the amplitudes of the complex electric and the complex magnetic fields of an electromagnetic plane wave in such a material.
d) [2 pts] Use Maxwell-Ampere's Law (not Faraday's Law) to show that the propagation vector and the electric field and the magnetic field vectors of an electromagnetic plane wave in such a material are pairwise orthogonal to each, following the right-hand-rule (state the order of the vectors).
4. [4 pts] Suppose $A e^{i a x}+B e^{i b x}=C e^{i c x}$, with some nonzero constants A, B, C, a, b, c and for all x. Prove that $a=b=c$ and $A+B=C$.

