Take the divergence of both sides of Faraday's law:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

What do you get?

- A. 0=0 (is this interesting!!?)
- B. A complicated partial differential equation (perhaps a wave equation of some sort ?!) for **B**
- C. Gauss' law!
- D. ???

Take the divergence of both sides of Ampere's law:

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

According to this, the divergence of J =

A.
$$-\partial \rho/\partial t$$

- B. A complicated partial differential of B
- C. Always 0
- D. ??

According to the principle of charge conservation, the divergence of **J** =

A.
$$-\partial \rho/\partial t$$

- B. A complicated partial differential of B
- C. Always 0
- D. ??