
We are interested in B on the dashed "Amperian loop", and plan to use $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{thru}$ to figure it out. What is I_{thru} ? The surface over which we will integrate J·dA is shown in light blue. A) I B) I/2 C) 0 D) Something else E) ??

Local conservation of electric charge is expressed mathematically by:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{\mathbf{J}}$$
 where J is "current density"
$$\mathbf{J} = \rho \mathbf{v} \text{ has units of (charge/sec)/m}^2$$

We are trying to come up with a "conservation of energy" expression:

$$\frac{\partial (\text{energy density})}{\partial t} = -\nabla \cdot (something)$$

What sort of beast is this "something"?

- Is it a scalar, vector, something else?
- How would you interpret it, what words would you use to try to describe it?
- What are its UNITS?
- A) J

- B) J/s C) J/m^2

D) $J/(s m^2)$

E) Other!