Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied. What is the E field inside

the resistor?

- A. (V/a) z-hat
- B. $(V/a) \varphi$ -hat
- C. (V/a) s-hat
- D. (Vs/a^2) z-hat
- E. None of the above

Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied. What is the B field inside the resistor?

- A. $(\mu_0/2\pi s) \Phi$ -hat
- B. $(I\mu_0 s/2\pi a^2)$ φ-hat
- C. $(I\mu_0/2\pi a)$ φ -hat
- D. $-(I\mu_0/2\pi a)$ φ -hat
- E. None of the above

Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied.

What is the direction of the **S** vector on the outer curved surface of

the resistor?

A.
$$\pm \phi$$
-hat

And, is it + or -?