Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied. What is the E field inside the resistor?

A. $(V / a) z$-hat
B. $(\mathrm{V} / a) \phi$-hat
C. $(\mathrm{V} / a) \mathrm{s}$-hat
D. (Vs/a2) z-hat
E. None of the above

Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied. What is the B field inside the resistor?

A. $\left(1 \mu_{0} / 2 \pi s\right) \phi$-hat
B. $\left(\mid \mu_{0} s / 2 \pi a^{2}\right) \phi$-hat
C. $\left(1 \mu_{0} / 2 \pi a\right) \phi$-hat
D. $-\left(1 \mu_{0} / 2 \pi a\right) \phi$-hat
E. None of the above

Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied. What is the direction of the \mathbf{S} vector on the outer curved surface of the resistor?

A. $\pm \phi$-hat
B. $\pm s$-hat
C. $\pm \mathrm{z}$-hat
D. ???

And, is it + or -?

