The 3-D wave equation is
$$\nabla^2 f(x, y, z, t) = \frac{1}{v^2} \frac{\partial^2 f(x, y, z, t)}{\partial t^2}$$

One particular "traveling wave" solution to this is often written

$$\tilde{f}_1(x,y,z,t) = \tilde{A} e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$
, where $\tilde{A} = A e^{i\delta}$.

This wave travels in the **k** direction (do you see why?) This wave has wavelength lambda= $2\pi/|\mathbf{k}|$ (do you see why?)

This wave has period $2\pi/\omega$ (do you see why?) This wave has speed $v = \omega/|\mathbf{k}|$ (do you see why?)

What is the real form of this wave?

A)
$$A\cos(kx - \omega t)$$
 B) $A\cos(kx - \omega t + \delta)$

C)
$$A\cos(\vec{k}\cdot\vec{r}-\omega t)$$
 D) $A\cos(\vec{k}\cdot\vec{r}-\omega t+\delta)$

E) More than one of these/other/???

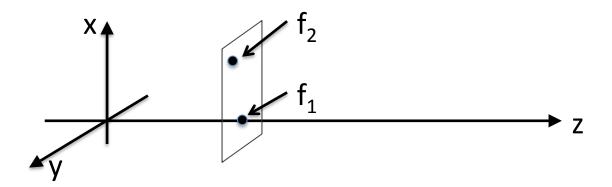
A wave is moving in the +z direction:

$$f(x, y, z, t) = Re[A e^{i(kz - \omega t + \delta)}]$$

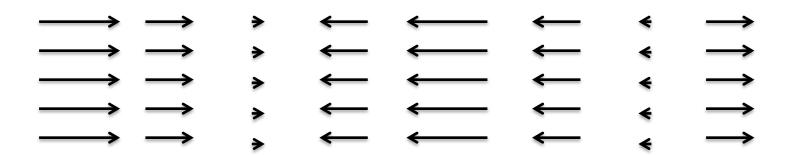
The value of f at the point $(0,0,z_0,t)$ and the point at (x, y, z_0, t) are related how?

$$f_1 = f(0,0,z_0,t)$$
 vs. $f_2 = f(x, y, z_0,t)$

- A) $f_1 = f_2$ always
- B) $f_1 > or < or = f_2$ depending on the value of x,y



Here is a snapshot in time of a longitudinal wave:



The divergence of this field is:

- A) Zero
- B) Non-zero
- C) Impossible to tell without further information