You have this solution to Maxwell's equations in vacuum:

$$\tilde{\vec{E}}(x, y, z, t) = \tilde{\vec{E}}_0 \exp\left[i\left(\vec{k} \cdot \vec{r} - \omega t\right)\right]$$

If this wave travels in the y direction, is polarized in the x direction, and has a complex phase of 0,

what is the x component of the physical wave?

A)
$$E_x = E_0 \cos(kx - \omega t)$$

B) $E_x = E_0 \cos(kz - \omega t)$
C) $E_x = E_0 \cos(kz - \omega t)$
D) $E_x = E_0 \cos(k_x x + k_y y - \omega t)$
E) Other!!

To think about: What is the y component? What would change if the complex phase of E_0 was 90⁰? -90⁰? A point source of radiation emits power P_o isotropically (uniformly in all directions). A detector of area a_d is located a distance R away from the source. What is the power p **received** by the detector?

E) None of these

Two radio dishes (shaped like bowls) are receiving signals from a radio station which is sending out radio waves in all directions with power P. Dish 2 is twice as far away as Dish 1, but has twice the diameter. Which dish receives more power? (Dish 2 is not in the shadow of Dish 1.)

A parabolic dish focuses the EM radiation from a source into a beam of constant diameter D :

The intensity of the light in the beam falls with distance R as:

A) I ~ 1/R²
B) I ~ 1/R
C) I = constant
D) Something else

