You have this solution to Maxwell's equations in vacuum:

$$
\tilde{\vec{E}}(x, y, z, t)=\tilde{\vec{E}}_{0} \exp [i(\vec{k} \bullet \vec{r}-\omega t)]
$$

If this wave travels in the y direction, is polarized in the x direction, and has a complex phase of 0 , what is the x component of the physical wave?
A) $E_{x}=E_{0} \cos (k x-\omega t)$

$$
\text { B) } E_{x}=E_{0} \cos (k y-\omega t)
$$

C) $E_{x}=E_{0} \cos (k z-\omega t)$
D) $E_{x}=E_{0} \cos \left(k_{x} x+k_{y} y-\omega t\right)$
E) Other!!

To think about: What is the y component?
What would change if the complex phase of E_{0} was 90° ? -90° ?

A point source of radiation emits power P_{o} isotropically (uniformly in all directions). A detector of area a_{d} is located a distance R away from the source. What is the power p received by the detector?
A) $\frac{P_{o}}{4 \pi R^{2}} a_{d}$
B) $P_{o} \frac{a_{d}^{2}}{R^{2}}$
C) $P_{o} \frac{a_{d}}{R}$
D) $\frac{P_{o}}{\pi R^{2}} a_{d}$
E) None of these

Two radio dishes (shaped like bowls) are receiving signals from a radio station which is sending out radio waves in all directions with power P. Dish 2 is twice as far away as Dish 1, but has twice the diameter. Which dish receives more power? (Dish 2 is not in the shadow of Dish 1.)

A: Dish 1
 B: Dish 2

C: Both receive the same power

A parabolic dish focuses the EM radiation from a source into a beam of constant diameter D :

The intensity of the light in the beam falls with distance R as:
A) $\mathrm{I} \sim 1 / \mathrm{R}^{2}$
B) $I \sim 1 / R$
C) I = constant
D) Something else

