Stokes' Theorem says that for a surface S bounded by a perimeter L, any vector field B obeys

$$\int_{S} \nabla \times \vec{B} \cdot d\vec{a} = \oint_{L(S)} \vec{B} \cdot d\vec{1}$$

Does Stokes' Theorem apply for *any* surface S bounded by a perimeter L, even one such as this balloon-shaped surface S:

A) Yes

B) No

C) Sometimes

Current I flows down a wire (length L) with a square cross section (side *a*) If it is uniformly distributed over the entire wire area, what is the magnitude of the volume current density?

A)
$$J = I/a^2$$

B)
$$J = I/a$$

C)
$$J = I/(a^2L)$$

$$D) \quad J = I/a^3$$

E) None of the above!