What is B at the point shown?

A)
$$\frac{\mu_0}{\pi s}I$$

B)
$$\frac{\mu_0}{2\pi s}I$$

$$\mathsf{C)} \quad \frac{\mu_0}{4\pi \ s} I$$

D)
$$\frac{\mu_0}{8\pi s}I$$

E) None of these

Inside this resistor setup, what can you conclude about the current density **J** near the side walls?

- A) Must be exactly parallel to the wall
- B) Must be exactly perpendicular to the wall
- C) Could have a mix of parallel and perp components
- D) No obvious way to decide!?

Inside this resistor setup, (real world, finite sizes!) what does the E field look like *inside*?

- A) Must be uniform and horizontal
- B) Must have *some* nonuniformity, due to fringing effects!

The question should also state that the conductivity inside the resistor is uniform. If the conductivity is nonuniform, the E-field can also be non-uniform, although this has nothing to do with fringing effects.