A circuit with a battery with voltage difference ΔV is attached to a resistor, and a steady current flows. The force per charge outside the battery is **E**. The force per charge inside the battery is **f** = \mathbf{f}_{bat} + **E**

How many of the following statements are true?

emf =
$$\oint \vec{f} \cdot d\vec{l}$$
 emf = $\oint \vec{f}_{bat} \cdot d\vec{l}$
emf = $\int_{A(inside bat)}^{B} \vec{f}_{bat} \cdot d\vec{l}$ emf = $\int_{B}^{A} \vec{E} \cdot d\vec{l}$ A) 0
B) 1
C) 2
D) 3
E) 4

$$EMF = \oint \vec{f} \cdot d\vec{l}$$

Is there a nonzero EMF around the (dashed) closed loop, which is partway inserted between two charged isolated capacitor plates.

- A) EMF=0 here
- B) EMF≠0 here
- C)? I would need to do a nontrivial calculation to decide

A loop of wire is near a long straight wire which is carrying a large current I, which is *decreasing*. The loop and the straight wire are in the same plane and are positioned as shown. The current induced in the loop is

A) counter-clockwise

B) clockwise

C) zero.

