
;**
;File Name: Alarm16F676.asm
;Author: N. Fitch
;Date: Oct 21, 2009.
;Version: 2.0
;Description: Turn on two LEDs and buzz the buzzer, then delay and repeat
; Bit 0 on port C (RC0) is used as an output connected to the buzzer
; Bit 1 on port C (RC1) is used as an output connected to LED#1
; Bit 2 on port C (RC2) is used as an output connected to LED#2

; Numbers on the right hand edge correspond to command notes and explanations that appear
; at the bottom of this document. As this is an introductory PIC chip example code,
; a minimum of chip programming commands has been used (only 10). The entire Microchip
; "assembly" programming language consists of only about 40 such commands.

;**
; SOFTWARE ASSEMBLY INFORMATION (1)
;**

list p=16F676 ; list directive tells assembler which processor
#include <p16f676.inc> ; get file containing processor specific symbol definitions

__CONFIG _CP_OFF & _WDT_OFF & _BODEN & _PWRTE_ON & _INTRC_OSC_NOCLKOUT & _MCLRE_OFF & _CPD_OFF

; ’__CONFIG’ directive is used to embed a processor configuration word within the .asm file.
; The labels following the directive are located in the p16f676.inc file.
; See the data sheet for information on configuration word settings.
;**

;Define symbols and variables to make the code more readable. (2)
;**
#define BUZZER PORTC,0 ; define symbols to refer to LED and buzzer I/O ports
#define LED1 PORTC,1 ; For instance, BUZZ now refers to bit 0 of PORTC
#define LED2 PORTC,2
#define CTris B’11111000’ ; bit pattern to config. LED and buzzer I/O pins to outputs
#define Bank0 h’00’ ; (3)
#define Bank1 h’80’
#define CMoff B’00000111’ ; bit pattern to turn analog comparator off

#define BUZZcounter h’20’ ; buzzer loop counter lives at address 20 (4)
;(h’xx’ means in hexadecimal)

#define BUZZnumber d’200’ ; number of times the buzzer will buzz each main loop cycle
; (d’xx’ means decimal value)
; default values give 1ms per entire period so d’200’ gives
; 200ms of "buzzing", then 200ms of "silence", repeated.

#define InnerCounter h’22’ ; delay counter storage location
#define InnerCount d’163’ ; d’163’ makes each delay 500.0us long.
;**

;Reset Vector
;**

ORG 0x000 ; processor reset vector, execution starts here on power up
nop ; required by in circuit debugger (5)
goto Init ; go to beginning of program (6)

;Initialization
;**
Init

banksel Bank1 ; go to bank 1 to reach TRIS registers (7)
movlw CTris ; get bit pattern to set Port C so bits 0,1,2 are outputs
movwf TRISC ; set it (8)
clrf ANSEL ; set I/O pins (PORTA and PORTC) to digital, not analog (8a)
banksel Bank0 ; back to bank 0 to reach I/O ports

movlw CMoff ; putting the bit value CMoff into CMCON special register
movwf CMCON ; turns off the comparator (part of making the I/O ports digital)

call LED1off ; turn off the LEDs and the buzzer (9)
call LED2off
call BUZZoff
call CorrectOscillator ; The PIC chip’s internal RC oscillator doesn’t

; actually run at 4MHz without a correction value.

;**

;Main program
;**
Mainloop

call LED1on ; turn on the LED#1
call LED2on ; turn on LED#2

movlw BUZZnumber ; put number of buzzer cycles desired in W register (10)
movwf BUZZcounter ; store number of cycles in the counter variable (11)

loop1 ; The buzzer is buzzing during loop 1
call BUZZon ; BUZZZZZZZZZ
call delay ; call delay subroutine (leave buzzer on for a while)
call BUZZoff ; No BUZZZZZZZ
call delay ; leave buzzer off for a while
decfsz BUZZcounter,f ; decrement loop counter, skip next command if done (12)
goto loop1 ; loop if counter not zero yet

; else continue

call LED1off ; turn off LED#1
call LED2off ; turn off LED#2

movlw BUZZnumber ; put number of cycles desired in W register (again)
movwf BUZZcounter ; store number of cycles in the counter variable

loop2 ; The buzzer is not buzzing during loop 2
call delay ; delay called twice above (loop1) for each loop sequence
call delay ; replicate that here, but without ever toggling the buzzer on/off.
decfsz BUZZcounter,f ; decrement loop counter, skip if done
goto loop2 ; loop if counter not zero yet

; else continue

goto Mainloop ; repeat forever
;**

;Subroutines
;**
LED1off

bcf LED1 ; turn off LED#1 (13)
return

LED1on
bsf LED1 ; turn on LED#1
return

LED2off
bcf LED2 ; turn off LED#2
return

LED2on
bsf LED2 ; turn on LED#2
return

BUZZoff
bcf BUZZER ; turn off buzzer I/O pin
return

BUZZon
bsf BUZZER ; turn on the buzzer
return

delay ; This delay is exactly (!) 500 us long.
movlw InnerCount
movwf InnerCounter

InnerLoop
decfsz InnerCounter,f ;
goto InnerLoop
nop
return ; return from subroutine when "OuterCounter" is empty.

CorrectOscillator
call 0x3FF ; this special function register contains the oscillator correction value
movwf OSCCAL ; now the oscillator should really be running at 4MHz.
return

END ; end of code, this has to be here for your code to build correctly.

; NOTES
;(1) The configuration section loads files to be included (that have pre−determined
; definitions, like what PORTC corresponds to on the actual device) with the
; #include command. It also accesses various chip options, like what to do on
; a brownout event, what code to protect, various timers etc.
;
;(2) User defined symbols and variables make the code easier to read. The #define
; command defines the first argument as the second argument. Thus when you refer
; to "BUZZER" in the main program, the chip knows that you mean bit 0 of PORTC.
;
;(3) The 16F676 has two "banks" of file registers in the chip. One shortcoming of
; Microchip’s design is that the user must explicitly change between banks to access
; file registers that live there. Hence to write to the TRISC special function
; register, you have to change to the bank in which it lives (bank1 in this case).
;
;(4) The file register that holds the current buzz counter is at address h’20’. This
; is the first user−accessible file register in bank 0. Registers below that address
; are special function registers. See the chip’s datasheet.
;
;(5) "nop" is a command that means "no operation". It just kills a little time.
;
;(6) A "goto" command branches (jumps) to the label that follows it. No return information
; is stored.
;
;(7) The "banksel" command selects the specified bank.
;
;(8) The TRISA and TRISC registers control the behavior of the input/output pins for
; PORTA and PORTC respectively. Writing 00001111 to the TRISA register makes the most
; significant (bits 7,6,5,and 4) outputs and the least significant bits inputs.
; These I/O pins also can function in analog mode (for Digital to Analog conversion etc.).
; You will notice in the code that the analog mode is explicitly turned off.
;
;(8a) The "clrf" command clears the specified file register (makes all bits 0’s).
;
;(9) The "call" command branches to a label in the code just like a "goto" does, but it
; also stores a return address so that when a "return" is executed, the processor
; jumps back to the next command after the "call".
;
;(10) The "movlw" command moves a literal (8 bits of data) into the working file register (W).
; The literal that is moved into W is the following 8−bit value.
;
;(11) The "movwf" command moves the contents of W into the specified file register.
;
;(12) The "decfsz" command decrements the value of a file register, skipping the NEXT
; line of code (usually a looped goto) if the result is zero (low state=0V).
; This is useful for delay loops and counting loops. The ",f" specification
; following the register name instructs the chip to leave the decremented
; result in that file register. There is also a "decfss" which skips the
; next instruction in the code if the tested bit is set (high).
;
;(13) The "bcf" command clears (makes low) the specified bit.
; It is followed by "register address,bit#".
;(14) the "bsf" command sets (makes high) the specified bit.

