In electronics one often wants to represent the ratio of two signals on a logarithmic scale. For this we use the decibel, $d B$. If we have two powers P_{1} and P_{2}
$d B=10 \log _{10}\left(P_{2} / P_{1}\right)$
or equivalently - when comparing two signals with the same kind of waveform -
$d B=20 \log _{10}\left(V_{2} / V_{1}\right)$.
Note dB is a relative unit of measurement, i.e. "This amplifier has a gain of 10 dB ." dB can be positive or negative. For example, +10 dB corresponds to P_{2} greater than P_{1} by a factor of 10 , and -3 dB corresponds to P_{2} less than P_{1} by approximately a factor of 2 .

For an absolute measure on a logarithmic scale there are a variety of other units. A common one is dBm.
$\mathrm{dBm}=10 \log (\mathrm{P}[\mathrm{mW}])$
Zero dBm corresponds to 1 mW of power. And in a 50Ω system 0 dBm corresponds to $220 \mathrm{mV}_{\mathrm{rms}}$.

