
1	
	

DIGITAL	ELECTRONICS:	LOGIC	AND	CLOCKS	
LAB	9	INTRO:	INTRODUCTION	TO	DISCRETE	DIGITAL	LOGIC,	MEMORY,	AND	CLOCKS	

GOALS	
In	 this	 experiment,	 we	 will	 learn	 about	 the	most	 basic	 elements	 of	 digital	 electronics,	 from	which	more	

complex	circuits,	including	computers,	can	be	constructed.		
	

Proficiency	with	new	equipment	and	approaches:	

o Logic	gates,	memory	circuits,	digital	clocks	
o Combining	components	&	Boolean	logic	

DEFINITIONS	
	

	 Duty	cycle	–	percentage	of	time	during	one	cycle	that	a	system	is	active		(+5V	in	the	case	of	digital	logic)	
Truth	table	–	table	that	shows	all	possible	input	combinations	and	the	resulting	outputs	of	digital	logic	components	
Flip-flop	-		a	circuit	that	has	two	stable	states	and	can	be	used	to	store	state	information.	
Logic	gates	–	a	physical	device	that	implements	some	Boolean	logic	operation	

DIGITAL	CIRCUITS	-	GENERAL	
	
In	almost	all	experiments	in	the	physical	sciences,	the	signals	that	represent	physical	quantities	start	out	as	

analog	waveforms.	To	display	and	analyze	the	information	contained	in	these	signals,	they	most	often	are	converted	
into	digital	 data.	Often	 this	 is	 done	 inside	 a	 commercial	 instrument	 such	 as	 an	 oscilloscope	 or	 a	 lock-in	 amplifier,	
which	is	then	connected	to	a	computer	through	a	digital	interface.	In	other	cases,	data	acquisition	cards	are	added	to	
a	 computer	 chassis,	 allowing	 analog	 signals	 to	 be	 input	 directly	 to	 the	 computer.	 Scientists	 usually	 buy	 their	 data	
acquisition	equipment	rather	 than	build	 it,	 so	 they	usually	don’t	have	to	know	too	much	about	 the	digital	circuitry	
that	makes	it	work.	Almost	all	data	are	eventually	analyzed	digitally	with	a	computer.		

Analog	information	can	be	translated	into	digital	form	by	a	device	called	an	Analog-to-Digital	Converter	(A/D	
converter	 or	 ADC).	 A	 set	 of	N	 bits	 has	 2N	 possible	 different	 values,	 as	 you	might	 recall	 from	 Lab	 #5.	 If	 you	 try	 to	
represent	an	analog	voltage	by	7	bits,	your	minimum	uncertainty	will	be	about	1%,	since	there	are	27	=	128	possible	
combinations	of	7	bits.	 For	higher	accuracy	you	need	more	bits.	The	corresponding	device	 that	 can	convert	digital	
data	back	into	an	analog	waveform	is	called	a	Digital-to-Analog	Converter	(D/A	converter	or	DAC),	which	we	built	in	
Lab	#5.	

Logic	gates	alone	can	be	used	to	construct	arbitrary	combinatorial	logic	(they	can	generate	any	truth-table),	
but	to	create	a	machine	that	steps	through	a	sequence	of	 instructions	like	a	computer	does,	we	also	need	memory	
and	a	clock.	The	fundamental	single-bit	memory	element	of	digital	electronics	is	called	a	flip-flop.	We	will	study	two	
types,	called	SR	(or	RS)	and	JK.	The	flip-flops	we	have	chosen	are	from	the	TTL	(Transistor-transistor	logic)	family.	A	
digital	 clock	 is	 a	 repeating	 digital	 waveform	 used	 to	 step	 a	 digital	 circuit	 through	 a	 sequence	 of	 states.	 We	 will	
introduce	 the	 555	 timer	 chip	 and	 use	 it	 to	 generate	 a	 clock	 signal.	 Digital	 circuits	 that	 are	 able	 to	 step	 through	 a	
sequence	of	states	with	the	aid	of	flip-flops	and	a	clock	are	called	sequential	logic.	
	
	
	
	

2	
	

DIGITAL	LOGIC	STATES	

 The	voltage	in	a	digital	circuit	is	allowed	to	be	in	only	one	of	two	states:	HIGH	or	LOW.	HIGH	is	taken	to	mean	
logical	(1)	or	logical	TRUE.		LOW	is	taken	to	mean	logical	(0)	or	logical	FALSE.		In	the	TTL	logic	family	(see	Figure	1),	the	
“ideal”	HIGH	and	LOW	voltage	levels	are	5	V	and	0	V	but	any	input	voltage	in	the	range	2	to	5.0	V	is	interpreted	as	
HIGH,	and	any	input	voltage	in	the	range	0	to	0.8	V	as	LOW.	Voltages	outside	this	range	are	undefined,	and	therefore	
“illegal,”	except	if	they	occur	briefly	during	transitions.	If	the	input	to	a	TTL	circuit	is	a	voltage	in	this	undefined	range,	
the	response	 is	unpredictable,	with	 the	circuit	 sometimes	 interpreting	 it	as	a	“1”	and	sometimes	as	a	“0.”	 	 	 	Avoid	
sending	voltage	in	the	undefined	range	into	a	TTL	components.		

	

Figure	1:	TTL	Input	Voltage	Levels	

DIGITAL	LOGIC	GATES	
	 The flow of digital signals is controlled by transistors in various configurations depending on the logic family
(see H&H 8.09 for details). For most purposes, we can imagine that the logic gates are composed of several ideal
switches with just two states: OPEN and CLOSED. The state of a switch is controlled by a digital signal. The switch
remains closed so long as a logical (1) signal is applied. A logical (0) control signal keeps it open.

Logic signals interact by means of gates. The three fundamental gates, AND, OR, and NOT, are named after
the three fundamental operations of logic that they carry out. The AND and OR gates each have two inputs and one
output. The output state is determined by the states of the two inputs. The NOT gate has one input and one output.
 The function of each gate is defined by a truth table, which specifies the output state for every possible
combination of input states. The output values of the truth tables can be understood in terms of two switches. If the
switches are in series, you get the AND function. Parallel switches perform the OR operation. The most common gates
are shown in Fig. 2. A small circle after a gate or at an input on the schematic symbol indicates negation (NOT).

	

3	
	

	

Operation	 Switches	 Condition	that		

circuit	is	closed	

Boolean	

Notation	

Symbol	 Truth	Table	

AND	

	

(A	AND	B	are	closed)	 A•B		
		 	

	

OR	

	

(A	OR	B	is	closed)	 A +B	
	 	

	

NOT	

(same	as	
invert)	

Different	

kind	of	switch	

1	means	open	

0	means	closed	

AA ≡)(NOT
	 	

	

						Compound	Gates	

NAND	

	

NOR	

	

XOR	

	

Figure	2:	Digital	Logic	gates	

A B
Series

A
B

A.B A B A.B

0 0 0
0 1 0
1 0 0
1 1 1

A
B

A+B
A B A+B

0 0 0
0 1 1
1 0 1
1 1 1

A A
_ A A

0 1
1 0

_

A
B

A.B

A
B

A+B

A
B

A + B
=AB+AB

Parallel	

A	

B	

4	
	

MEMORY	ELEMENTS	AND	FLIP-FLOPS

 In	 sequential	 logic	 circuits,	 the	 output	 depends	 upon	 previous	 values	 of	 the	 input	 signals	 as	well	 as	 their	
present-time	 values.	 Such	 circuits	 necessarily	 include	 memory	 elements	 that	 store	 the	 logic	 values	 of	 the	 earlier	
signals.	The	fundamental	memory	circuit	is	the	RS	memory	element.	The	JK	flip-flop	has	an	RS	flip-flop	at	its	core,	but	
it	adds	circuitry	that	synchronizes	output	transitions	to	a	clock	signal.	Timing	control	by	a	clock	 is	essential	to	most	
complex	sequential	circuits	

RS	Memory	Circuit	

The	truth	table	for	the	RS	memory	element	shows	how	the	circuit	remembers.	Suppose	that	it	is	originally	in	a	state	
with	Q=0	and	R=S=0.	A	positive	pulse	S	at	the	input	sets	it	into	the	state	Q=1,	where	it	remains	after	S	returns	to	zero.	
A	later	pulse	R	on	the	other	input	resets	the	circuit	to	Q=0,	where	it	remains	until	the	next	S	pulse.	

JK	Flip-Flop	(TTL74107)	

There	are	three	kinds	of	inputs	to	the	JK	flip-flop	
	 1)	data	inputs	J	and	K	
	 2)	the	clock	C	
	 3)	the	direct	input	CLR	(clear)	
	
There	are	two	outputs:		Q	and	its	compliment.				

	
Figure	4:	JK	Flip-Flop	

n	counts	 the	number	of	clock	pulses	since	the	start	of	 the	experiment.	 In	 the	absence	of	a	clock	pulse,	 the	output	
remains	unchanged	at	the	previously	acquired	value,	Qn,	which	is	independent	of	the	present-time	data	inputs	J	and	K.	
Only	on	the	arrival	of	a	clock	pulse,	C,	can	the	output	change	to	a	new	value,	Qn+1.	The	value	of	Qn	depends	on	the	J	
and	K	inputs	in	the	way	specified	in	the	truth	table.	The	change	occurs	at	the	falling	(trailing)	edge	of	the	clock	pulse,	
indicated	by	a	downward	arrow	in	the	truth	table	in	Fig.	4.		
The	direct	input,	CLR,	overrides	the	clock	and	data	inputs.	During	normal	operation,	CLR	=	1.	At	the	moment	CLR	goes	
to	zero,	the	output	goes	to	zero	and	remains	there	as	long	as	CLR	=	0.	

Figure	3:		RS	memory	element.	

RS MEMORY
Signals

R

S

Q

R

S

Q = R + P

P = S + Q

Circuit Symbol

R

S

Q

Q

Truth Table

S R Q P=Q
0

0
1

1

0
0
1
1

Stays the same
1 0
0 1
0 0
Disallowed

P = QSET
RESET

time

5	
	

	
555	Timer	and	Digital	Clock	
	
See	FC	section	11.14	for	a	description	of	the	guts	of	the	555	timer	chip.	Figure	9.7	shows	the	circuit	for	generating	a	
clock	with	the	555	and	summarizes	the	formulas	relating	the	resistor	and	capacitor	values	to	the	output	low	time	T1	
and	the	output	high	time	T2	

	

	

	

	

	

	

	

(a) Astable circuit (Digital Clock)

1

2

3

4

8

6

5

7

GND

TRIG

OUT

RST

+

DIS

THR

BYP

55
5

RA

RB

+5V

C0.1uf
0V

Output

VC

(b) Component values
Output High (charge time):
 T2 = (RA+RB)C ln2
Output Low (discharge):
 T1 = RBC ln2
Period: T = T1 + T2

(c) Limiting Values
Max RA, RB 3.3 MΩ
Min RA, RB 1 kΩ
Min. C 500pf

V+

.667 V+

.333 V+

time

DC Volts
Supply Voltage (5V)
Threshold Level

Trigger Level

Pin 6 - Capacitor Voltage Vc

V+

time

DC Volts Pin 3 Output Voltage
t2 t1

C charges through RA and RB in series
C discharges through RB only
Output is positive while C is charging
Output is grounded while C is discharging

(d) Voltage outputs

Figure 9.7 Astable circuit using 555 Timer chip

6	
	

		

DIGITAL	LOGIC	CHIP	PINOUTS	
	 Each	chip	has	a	dot	or	notch	to	indicate	the	end	where	pins	1	and	14	are	located.	The	pin	numbers	increase	
sequentially	 as	 you	 go	 counter-clockwise	 around	 the	 chip	 viewed	 from	 above.	 In	 74xx	 family	 logic	 chips,	 pin	 7	 is	
always	grounded	(0	V)	and	pin	14	is	always	connected	to	the	+5	V	supply.		
	
	 	

	

	

	
74107	JK	flip-flop	
	
	
	

7	
	

USEFUL	READINGS	
1. FC	Chapter	11	(digital	electronics)			
2. H&H	Chapter	8.	Everything	in	this	chapter	is	good	to	know	about	but	sections	8.01,	8.02,	8.04,	8.07-8.10,	

8.12,	8.16	are	most	relevant.		Also	have	a	look	at	section	5.14	on	the	555	timer	chip.		

LAB	PREP	ACTIVITIES	

Answer	the	following	questions	using	Mathematica	or	do	them	by	hand	in	your	lab	book.		

Question	1	
	

Basic	Digital	Logic	
a. Read	the	lab	thoroughly	and	enter	in	your	lab	book	the	circuit	diagrams	and	truth	tables	of	all	

the	circuits	you	will	test.	These	include	the	NAND,	NOR,	and	INVERT/NOT.		
b. Design	a	circuit	to	perform	the	EXCLUSIVE	OR	(XOR)	function	using	only	NAND	and/or	NOR	

gates.	Simplify	the	circuit	so	that	you	use	the	smallest	possible	number	of	NAND	and/or	NOR	
gates	

c. Check	the	circuit	does	perform	the	EXLUSIVE	OR	using	truth	tables	or	Boolean	algebra.	

Question	2	

	

555	Timer	
a. Design	a	4	kHz	clock	using	the	555-timer	chip.	Make	the	low	level	1/4	of	the	output	period	(a	

75%	duty	cycle:	25%	low,	75%	high).		
b. How	large	a	capacitor	would	you	need	to	substitute	in	order	to	modify	your	clock	to	run	at	1	

Hz	(e.g.	for	visual	observation	of	LEDs),	keeping	all	other	components	fixed?	

Question	3	 JK	Flip-flop	
a. A	JK	flip-flop	with	J=K=1	and	CLR=1	is	driven	at	the	clock	input	by	1	kHz	pulses.	Draw	the	

waveforms	for	the	clock	and	the	Q	output	vs.	time	using	the	same	time	scale.	Make	sure	to	
include	enough	periods	of	the	clock	signal	to	see	all	the	behavior	of	the	flip-flop’s	output.		

Question	4	 Lab	activities	
a. Read	through	all	of	the	lab	steps	and	identify	the	step	(or	sub-step)	that	you	think	will	be	the	

most	challenging.	
b. List	at	least	one	question	you	have	about	the	lab	activity.	

	

TTL	GATES	
	
	 	
Step	1	
	

Truth	Tables	
a. Check	your	power	supply	before	connecting	to	the	circuit	board.	The	Tektronix	PS	280/3	

has	a	fixed	5	V	output	that	you	should	use	to	power	digital	circuits.	The	logic	chips	will	
burn	out	at	around	6	V.	If	the	supply	voltage	drops	when	you	connect	to	the	circuit,	do	not	
increase	V.		

b. Input	logical	values	can	be	set	by	connecting	wires	from	the	gate	inputs	to	either	0	V	
(logical	0)	or	5	V	(logical	1).	Use	one	long	rail	on	your	prototyping	board	for	0V	and	one	for	
5V.	Note:	Disconnecting	an	input	from	the	5	V	rail	is	not	the	same	as	connecting	it	to	0V.	
If	it	is	disconnected,	the	input	can	float	up	to	5	V	on	its	own.	

c. The	logic	level	of	the	output	can	be	observed	using	a	light	emitting	diode	(LED),	which	is	
connected	from	the	output	to	ground.	The	LED	lights	up	when	the	output	is	+5	V	and	is	off	
when	the	output	is	0	V.	To	limit	the	amount	of	current	though	the	diode,	place	a	resistor	
in	series	with	it.	What	value	of	resistor	should	you	use	to	limit	the	current	to	20	mA?	
Record	your	calculation.	

d. Record	 the	measured	 truth	 tables	 for	 the	NAND	(7400),	NOR	 (7402),	and	 INVERT	 (7404)	
gates,	using	the	LED	indicators	for	your	measurements.		

8	
	

	
Step	2	
	

	
Modifying	basic	gates	

a. Connect	a	NAND	gate	so	that	it	performs	the	INVERT	function.	Do	this	for	a	NOR	gate	also.	
This	trick	will	be	convenient	in	simplifying	complex	circuits.	

b. Record	you	circuit	and	measured	truth	table.	
Step	3	 Exclusive	OR	

a. Verify	the	truth	tables	for	an	EXCLUSIVE	OR	chip	(7486).		
b. Now	build	and	test	the	XOR	circuit	of	your	own	design	using	only	NANDs	and	NORs.		

	

	

MEMORY	CIRCIUTS	

	
Step	4	
	

RS	memory	circuit
a. Build	an	RS	memory	circuit	from	two	NOR	gates.	Draw	a	schematic	of	your	circuit.	
b. Demonstrate	the	memory	property	by	going	through	a	complete	memory	cycle:	Set	(R	=	0,	

S	=	1),	Store	(0,	0),	Reset	(1,	0),	Store	(0,	0),	Set	(0,	1).	Record	all	 inputs	and	outputs	for	
each	cycle.	Does	it	agree	with	predictions?	

c. Examine	the	effect	of	the	“illegal”	input	(R	=	1,	S	=	1),	for	different	initial	states	of	the	RS	
system.	Describe	the	outcomes	of	the	illegal	operation.	

TTL	CLOCK	

	
Step	5	
	

Digital	Clock
a. Build	the	4	kHz	digital	clock	using	a	555	Timer	according	to	your	design	 in	Question	2	of	

the	prelab.	Measure	 the	 frequency,	 the	pulse	 length	 (time	 the	output	 is	 high),	 the	duty	
cycle,	 and	 the	 nominal	 5-volt	 amplitude.	 Do	 your	 measurements	 agree	 with	 your	
predictions	using	the	measured	values	of	your	components?	

b. Check	that	a	suitable	large	capacitor	placed	in	parallel	with	the	existing	one	converts	the	
clock	to	1	Hz.		

JK	FLIP-FLOP	

	
Step	6	
	

a. Construct	a	truth	table	for	the	JK	flip-flop	from	your	observations	using	the	LED	indicators.	
Since	the	output	depends	upon	the	previous	state,	Qn,	you	will	need	to	tabulate	Qn+1	 for	
both	 possible	 previous	 states,	 Qn=0	 and	Qn=1.	 We	 suggest	 that	 you	 add	 an	 additional	
column,	Qn+2	,	to	get	a	better	feel	for	the	behavior	of	the	flip-flop.		

b. Set	CLR	=	1	and	J	=	K	=	1.	Now	drive	the	clock	input	of	the	flip-flop	with	4	kHz	pulses	from	
your	 clock	 circuit	 as	 shown	 in	 Fig.	 5.	 Use	 the	 oscilloscope	 to	 measure	 the	 clock	 input	
(positive	pulses	 out	 of	 the	NAND	gate),	 and	 the	output,	Q,	 of	 the	 flip-flop.	 Record	 your	
measurements.		

c. What	happens	when	J	=	K	=	0?		

9	
	

	

Figure	5:	JK	Flip-flop	test	set-up	

	

APPENDIX:	BOOLEAN	ALGEBRA	

Fundamental	laws		

We	imagine	a	logical	variable,	A,	that	takes	on	the	values	0	or	1.	If	A	=	0	then	Ā	=	1	and	if	A	=	1	then	Ā	=	0	.	Here	are	

some	obvious	identities	using	the	AND,	OR	and	NOT	operations.	Looking	at	these	identities	you	can	see	why	the	‘plus’	

symbol	was	chosen	for	OR	and	‘times’	(•)	for	AND.		

OR	 AND	 NOT	

A + 0 = A	 A• 0 = 0	 A + A =1	
A+1=1	 A•1= A	 A• A = 0 	
A+ A= A	 A• A= A	 A = A	
A + A =1	 A• A = 0 	 	

	

Equality	

Two	Boolean	expressions	are	equal	if	and	only	if	their	truth	tables	are	identical.	

Associative	Laws	

A + B()+ C = A+ B + C()
AB()C = A BC()

	

Distributive	Laws	

A B + C()= AB+ AC
Related identities :

A + AB()= A

A + A B()= A+ B

A+ B()• A + C()= A+ BC()

	

10	
	

DeMorgan’s	Theorems	

A • B •K = A + B +K
A + B +K = A • B •K

	

Example of Proof	

Each of the above equalities is a theorem that can be proved. Let’s do an example by directly comparing the truth

tables for the left and right sides. We take on DeMorgan’s first theorem for two variables, AB = A +B 	

The last columns of the truth tables are identical. Thus, the first theorem is proven for two variables.

Example of Simplification

Boolean algebra can be used to simplify logical expressions and reduce the number of gates required in a circuit. In

Fig. 9.3 we show two ways to implement the expression, Y = A + A BC.

	

	

A	 B	 AB	 AB	

0	 0	 0	 1	

0	 1	 0	 1	

1	 0	 0	 1	

1	 1	 1	 0	

A	 B	 A 	 B 	 A + B 	
0	 0	 1	 1	 1	

0	 1	 1	 0	 1	

1	 0	 0	 1	 1	

1	 1	 0	 0	 0	

	

	

Fig. 9.3. Boolean simplification

A) DIRECT IMPLEMENTATION using NOT, NOR, and NAND
A

B
C

BC BC

A

ABC ABC
A+ABC

Y = A+ABC

B) SIMPLIFIED CIRCUIT
Y = A+ABC

= A+BC (by identity #2)
= A+BC (by property of NOT)

= A(BC) (by De Morgan 's Law)

A
B
C

A

Y = A+ABC

