2 point(s)

Physics of TV sets

An electron (mass $m=9.11 \mathrm{E}-31 \mathrm{~kg}$) is accelerated in the uniform field $\mathbf{E}(\mathrm{E}=1.36 \mathrm{E}+4 \mathrm{~N} / \mathrm{C})$ between two parallel charged plates. The separation of the plates is 1.01 cm . The electron is accelerated from rest near the negative plate and passes through a tiny hole in the positive plate, as seen in the figure below. With what speed does it leave the hole?

Tries 0/5

2 point(s)
electric repulsion and force diagrams

(c21p66) In the figure, two conducting balls of identical mass $\mathrm{m}=10 \mathrm{~g}$ and identical charge q hang from nonconducting threads of length $\mathrm{L}=100 \mathrm{~cm}$. If $\mathrm{x}=5.8 \mathrm{~cm}$, what is q ? Since x is much smaller than L approximate $\sin (\theta)$ by θ.

Tries 0/5

2 point(s)

Electric field line concepts

Select True or False for the follwing statements about electric field lines.

Choices: True, False.
A. E-field lines may cross.
B. A positive point charge released from rest will initially move along an E-field line.
C. E-field lines point inward toward negative charges.
D. E-field lines do not begin or end in a charge-free region except at infinity.
E. E-field lines point outward from positive charges.
F. Where the E-field lines are dense the E-field must be weak.
G. E-field lines make circles around positive charges.

Tries 0/5

2 point(s)

More E field line concepts

The figure shows the E-field in the plane of two point charges.

Choices: True, False.

A. A - charge at a would accelerate to the left.
B. The size of Q_{1} is larger than that of Q_{2}.
C. Q_{1} is positive.
D. The magnitude of E is the same at a and b.
E. Q_{1} and Q_{2} have the same sign.
F. A + charge at c would accelerate to the right.

Tries 0/5

2 point(s)

Superposition

Two charges, $+q$ and $-q$, are located in the x-y plane at points $(0,+\mathrm{d} / 2)$ and ($0,-$ $\mathrm{d} / 2$), respectively. Calculate the magnitude of the electric field at point P with the superposition principle.

Data: $\mathrm{q}=34.0 \mathrm{nC}, \mathrm{d}=4.80 \mathrm{~mm}$ and P at $\mathrm{x}=96.0 \mathrm{~mm}$.
\square

Tries 0/5

