Due date: Fri 10 Sep 2004 08:00:00 AM MDT
6 point(s)
Circular_ring_of_charge
A uniform circular ring of charge $\mathrm{Q}=5.80$ microCoulombs and radius $R=1.10 \mathrm{~cm}$ is located in the $\mathrm{x}-\mathrm{y}$ plane, centered on the origin as shown in the figure.

What is the magnitude of the electric field \mathbf{E} at point P , located at $\mathrm{z}=4.10 \mathrm{~cm}$?
\square

Tries 0/5

Consider other locations along the positive z-axis. At what value of z does \mathbf{E} have its maximum value?
\square

Tries $0 / 5$

If $z \ll R$ then E is proportional to z. (You should verify this by taking the limit of your expression for \mathbf{E} for $\mathrm{z} \ll$ R.) If you place an electron on the z-axis near the origin it experiences a force $\mathrm{F}_{z}=-\mathrm{cz}$, where c is a constant. Obtain a numerical value for c .
\qquad

Tries $0 / 5$

4 point(s)

Uniformly Charged Rod

A charge $Q=1.50 \times 10^{-4} \mathrm{C}$ is distributed uniformly along a rod of length $2 L$, extending from $\mathrm{y}=-17.7 \mathrm{~cm}$ to $\mathrm{y}=+17.7$ cm , as shown in the diagram below. A charge $q=5.50 \times 10^{-6}$ C , and the same sign as Q, is placed at $(D, 0)$, where $D=$ 41.0 cm .

Consider the situation as described above and the following statements. Select "True" or "False" for each statement.

Choices: True, False.

A. The charge on a segment of the rod of infinitesimal length $d y$ is given by $d Q=\frac{Q}{L} d y$
B. The magnitude of the force on charge q due to the small segment $d y$ is $d F=\frac{k q Q}{2 L r} d y$
C. The net force on q in the x-direction does not equal zero.
D. The net force on q in the y -direction equals zero.
E. The total force on q is in the southeast direction.

Tries $0 / 5$

Use integration to compute the total force on q in the x direction.

4 point(s)
Cubic Box
A cubic box of side $\mathrm{a}=0.440 \mathrm{~m}$ is placed so that its edges are parallel to the coordinate axes, as shown in the figure. There is NO net electric charge inside the box, but the space in and around the box is filled with a nonuniform electric field of the following form: $\mathrm{E}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{Kz} \mathbf{j}+\mathrm{Ky} \mathbf{k}$, where $\mathrm{K}=$ $3.00 \mathrm{~N} /(\mathrm{Cm})$ is a constant.

What is the electric flux through the top face of the box? (The top face of the box is the face where $z=a$. Remember that we define positive flux pointing out of the box.)

What is the total electric flux through the five other faces of the box? (Again, outward flux is positive.)

