Due date: Fri 15 Oct 2004 08:00:01 AM MDT **Circuit concepts**

Consider the three circuits shown above. All the resistors and all the batteries are identical.

Choices: True, False.

- A. The voltage across a single resistor in circuit C is twice the voltage across a single resistor in circuit B.
- B. The current through a resistor is the same in circuits A and C.
- C. The current through a resistor is the same in circuits A and B.
- D. The power dissipated in circuit A is twice the power dissipated in circuit B.
- E. The total power dissipated in circuit C is twice the total power dissipated in circuit B.

more circuit concepts

Consider the sections of two circuits illustrated above. Select True or False for all statements.

Choices: True, False.

- A. R_{ab} is always less than or equal to R_1 .
- B. After connecting \mathbf{c} and \mathbf{d} to a battery, the current through R_3 always equals the current through R_4 .
- C. R_{cd} is always less than or equal to R_3 .
- D. After connecting **a** and **b** to a battery, the voltage across R_1 always equals the voltage across R_2 .

Equivalent resistance

In the section of circuit below, $R_1 = 8.389 \ \Omega$, $R_2 = 1.210 \ \Omega$, and the voltage difference V_a - V_b = 2.600 V. The current i= 0.290 A. Find the current through R_3 .

Double Circuit Consider the electric circuit in the figure below with the following parameters:

 $\varepsilon_1 = 3 \text{ V}, \ \varepsilon_2 = 1.5 \text{ V}, \ R_1 = 500 \ \Omega, \ R_3 = 300 \ \Omega.$

Kirchhoffs law

What is the magnitude of the current through R_1 ? DATA: $R_1 = R_2 = R_3 = 20.0 \Omega$. $V_1 = 10.0$ Volts. $V_2 = 2V_1$.

Printed from LON-CAPA MSU

Licensed under GNU General Public License