Physics 4810 / 7810 Week VIII - more than "content"!

Day 13: Fa2008:
What's all the fuss about Metacognition?
What's the implication of the Hidden Curriculum?

Class-updates:

- feedback forms
- projects

Structural Update

- De-Emphasis on trad'l content:
- No chapter summaries
- More YOU doing design for classroom (e.g. design a hw problem)
- Bring texts to class
- Schedule update- on web
- Too much reading. I like the reading a lot, but this long reading and with the other two papers is too much.
- Start to scale -back (a wee bit) on weekly work to let you emphasize projects...
- Projects: if you don't have (enough) feedback from me... ASK ME!

Project work

- Coordinating Surveys
- High school
- Phys 1110

Elsewhere?

Clarifying points from readings

- What is MMSU
- I want to know how to interpret the R value. I remember in my math classes that we considered R values in the 0.9 and above range as strong correlation. Not $\mathrm{R}=0.63$
- What are normalized learning gains?
- How would you determine if there was a causal relationship between beliefs and interest?
- I wonder how many students just answer "Neutral" all the way down.
- 2) What is the FMCE? How does it compare to the FCI?

What are the implications of

 student expectations?- If I were to design a class that was inclusive (of diverse student backgrounds), promoted student interest and engagement, best prepared students for future classes, what do the following data sets have to say about what I focus on?

4 Groupings

- Dataset \#1: conceptual understanding
- Dataset \#2: course / major (and distribution)
- Dataset \#3: gender and course/major
- Dataset \#4: "splits" - what you think, vs what a physicist would think.

Dataset \#2

Course Type	$\begin{gathered} \text { School } \\ \text { Type/Term } \end{gathered}$	Dominant student population	$\begin{aligned} & \text { No. of } \\ & \text { students } \\ & \text { w/CLASS } \end{aligned}$	Beliefs \% favorable ${ }^{\text {s }}$			
				Pre	Post	Pre	Post
Non-Sci-I	CU/Fa03	non-sci	77	56\%	57\%	44%	46\%
Non-Sci-II	CU/Sp04	non-sci	34	71\%	73\%	61%	67%
${ }_{3} \mathrm{Alg}-\mathrm{I}$	CUFFa04	pre-meds	313	56\%	58\%	49\%	53%
Calc-1 (all)	CU/Sp04	engineers	416	64\%	66\%	72\%	71%
$\frac{\square}{2}$ Calc-1 (all)	CUFFa4	engineers	400	64\%	58%	67\%	56\%
Calc-1 (phys maj only)	CU/Fa04	phys maj	35	71\%	69\%	86\%	82\%
Soph. Level Phys	CU/Sp05	phys maj	69	75\%		89%	
Enviro.Chem	CUFa04	Env. and non-sci	79	50\%	44\%	49%	$\frac{35 \%}{30 \%}$
E. Gen.Chem-I (all)	CU/Fa04	biophysiology	461	51\%	45\%	49\%	39%
E Gen.Chem-I (chem. maj only)	CU/Fa04	chem. majors	45	54\%	50%	62\%	49%
$\stackrel{\text { ¢ Honors Gen Chem-I }}{ }$	CUFa04	biochem/chem.	20	73\%	67\%	78\%	75%
Junior Level Chem	CUFFa0	physical chem.	16	69\%	63\%	71%	68\%
$\mathrm{I}=1^{18}$ semester, $\mathrm{II}=2^{\text {n4 }}$ semester: ${ }^{5}$ typical standard deviation for 'Overall' is $\sim 16 \%$. Uncertainties for the Personal interest range from $\sim 1 \%$ for 400 students to $\sim 5 \%$ for 16 students. Stat. significant shifts in color. See text.							

Dataset \#3

Student ABs by gender

Dataset \#4

Students responded to CLASS survey in two ways: PERSONAL = "What do you believe?"
PHYSICIST = "What would a physicist say?"
Calculus-based $1^{\text {st }}$ term

Group Reporting

- Conceptual understanding
- Distribution and course
- Gender
- Personal-view vs "What a physicist thinks"

JIGSAW

- If I were to design a class that was inclusive (of diverse student backgrounds), promoted student interest and engagement, best prepared students for future classes, what do the following data sets have to say about what I focus on?

How do these messages get sent?
"People respond to incentives ... How do we get students to develop the "right" incentives?"

Homework Example from 121

Teaching Metacognition

- Does it have to be explicit?
- What about implicit framing, or apprenticeship?

Schoenfeld Approach

- What are you doing?
- Why are you doing it?
- How does it help?

Figure 3.4 Sample plots of student activites in solving math problems in Alan Schoonfedds metacognitive math class.
mall triangles mark metacogatitive sateremens [Scoenfeld 1985 .

What are Schoenfeld's 4 Approaches to MCcompetence

- Videotapes (watching students learn)
- Teacher as Role Model
- Whole Class Problem Solving with teacher as control
- Problem Solving in Small Groups * (possibly assigning roles: see FN 7

