
Notes on Lie groups and Lie algebras for PHYS5030

Michael Hermele

1 Examples of Lie groups and Lie algebras

1.1 SO(N)

Now that we’ve discussed Lie groups and Lie algebras in general to some extent, let’s look at
some examples. We will start with SO(N), the group of rotation matrices in N -dimensional
space. Recall that elements of SO(N) are just real N ×N matrices R that satisfy RTR = I,
where I is the N×N identity matrix, and also detR = 1. (If we drop the condition detR = 1,
then we have the group O(N).)

Our general discussion required us to start with a Lie group that has a faithful unitary
representation, and we already have that here, because the rotation matrices R are already
unitary. So for an infinitesimal rotation we can write R = I + iαaXa, where the Xa are
Hermitian. The rotation matrices are a subset of N ×N unitary matrices, so there will be
more conditions on Xa. In particular since R is real, Xa has to be purely imaginary. A
purely imaginary Hermitian matrix is necessarily antisymmetric, so XT

a = −Xa. In fact this
is the only condition we need because

RTR = (I + iαaX
T
a )(I + iαbXb) = I + iαa(X

T
a +Xa), (1.1)

dropping second order terms for infinitesimal αa. As long as Xa is antisymmetric, the
right-hand side is just the identity matrix I. Therefore the generators of SO(N) are just
antisymmetric Hermitian matrices. We will pick Xa to be a basis for such matrices (see
below). We won’t try to prove it, but it’s true that a general SO(N) matrix can be written
in the form

R = exp(iαaXa). (1.2)

What about the condition detR = 1? There is a useful matrix identity,

det eA = etrA. (1.3)

This is easy to prove if A is Hermitian (or anti-Hermitian) – go to a basis where A is diagonal,
and the identity is obviously true in this basis. Then observe that both the determinant and
the trace are basis-independent, so it has to be true in any basis.

In the present case, since any anti-symmetric matrix Xa is traceless, we have detR =
exp(iαa trXa) = e0 = 1. So any matrix of the form Eq. (1.2) is automatically in SO(N), i.e.

1



it automatically has determinant 1, even though we did not use the determinant 1 condition
in figuring out the generators. Since we didn’t use the determinant 1 condition, you might
have thought we would get all orthogonal matrices. The reason we don’t get orthogonal
matrices with determinant −1 is that these are not continuously connected to the identity
matrix, but any matrix of the form Eq. (1.2) is obviously continuously connected to the
identity (just make αa smaller and smaller). To recap what happened here, the groups
SO(N) and O(N) have the same generators, but if we exponentiate the generators, we only
get SO(N) matrices. This makes sense, because it turns out that SO(N) is precisely the
subgroup of O(N) consisting of those orthogonal matrices that can be continuously deformed
to the identity matrix.

To get a handle on the Lie algebra of SO(N), it’s helpful to choose a particular set of
Xa’s. First let’s look at N = 2. In this case, up to a proportionality constant, there is only
one 2× 2 Hermitian antisymmetric matrix,

X1 =

(
0 −i
i 0

)
. (1.4)

The only thing to say about the SO(2) Lie algebra is the obvious fact that [X1, X1] = 0.
This just reflects the fact that rotations of two-dimensional space always commute with each
other.

Let’s move on to N = 3, which is more interesting. Then there are three generators, and
we choose

X1 =

 0 0 0
0 0 −i
0 i 0

 ≡ L1 (1.5)

X2 =

 0 0 i
0 0 0
−i 0 0

 ≡ L2 (1.6)

X3 =

 0 −i 0
i 0 0
0 0 0

 ≡ L3. (1.7)

In Zee’s book, these matrices are called Jx, Jy and Jz, respectively, and they generate
rotations about the x, y and z axes. (You should check this e.g. by working out the matrix
exponential exp(iθL3), which corresponds to a rotation by θ about the z-axis. You can work
this out directly from the Taylor series that defines the matrix exponential.) These matrices
obey the familiar commutation relations

[La, Lb] = iεabcLc, (1.8)

where εabc is the usual completely antisymmetric ε-symbol. So evidently for SO(3), we have
found the structure constants of the Lie algebra, and fabc = εabc. It’s important to note that
the structure constants depended on making a particular choice of the Xa’s, a basis choice
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if you like. We could have chosen a different set of three Xa’s, as long as any Hermitian
antisymmetric matrix can be written as a linear combination of them (with real coefficients),
and this would be fine but the expression for the structure constants would be different in
this different basis.

Just a quick word about notation here – I am trying to use Xa to refer to the generators
of a Lie algebra in general, but use other symbols (at least sometimes) when referring to
specific generators of some specific Lie algebra. That’s why I called the generators L1, L2, L3

above.
Now let’s discuss the generators and the Lie algebra for general N . In N -dimensional

space, the analog of rotations about the x, y and z axes in three-dimensional space are
rotations in the (mn)-plane, where m,n = 1, . . . , N and we take m < n. In such a rotation,
we rotate the m-axis into the n-axis and vice versa. So for instance, a rotation about the
z-axis in three dimensional space can also be described as a rotation in the (12)-plane. This
kind of description is better for N > 3, because for N > 3, we can’t specify a plane by “the”
axis perpendicular to it – there are many axes perpendicular to each plane. So to write
down the generators of SO(N), we trade the label a for the new label (mn) ... these are just
different ways of labeling the generators, so we can use whatever notation we like. Then we
will have generators X(mn) ≡ L(mn), which are given by the formula

(L(mn))ij = −i(δmiδnj − δmjδni). (1.9)

You should convince yourself that (1) this is an antisymmetric N × N matrix and (2) any
Hermitian antisymmetric N × N matrix can be written as a real linear combination of the
L(mn)’s. How many generators are there? There are N(N − 1)/2 (you should also convince
yourself of this).

The SO(N) Lie algebra is then given by computing the commutators of these matrices,
which are [

L(mn), L(pq)

]
= i
(
δmpL(nq) + δnqL(mp) − δnpL(mq) − δmqL(np)

)
. (1.10)

1.2 U(N) and SU(N)

Another important Lie group is U(N), the group of N ×N unitary matrices. It also has the
important subgroup SU(N), consisting of those unitary matrices with determinant one.

Let’s start with U(N), which is defined precisely as the type of faithful representation we
need to get started. We already saw that if the infinitesimal transformation U = 1 + iαaXa

is unitary, then Xa is Hermitian, and there are no further restrictions. So the generators of
U(N) are simply Hermitian matrices Xa. Let’s look at some special cases first.

Take N = 1, then any Hermitian matrix is just a real number, and we can take X1 = 1.
This is kind of boring in the same way the Lie algebra for SO(2) is boring. In fact, SO(2)
and U(1) are isomorphic groups (convince yourself of this), so their Lie algebras also have
to be the same.

N = 2 is more interesting, then there are four generators which we label as X0, . . . , X3,
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and which are

X0 =

(
1 0
0 1

)
(1.11)

X1 =
1

2

(
0 1
1 0

)
=

1

2
σx (1.12)

X2 =
1

2

(
0 −i
i 0

)
=

1

2
σy (1.13)

X3 =
1

2

(
1 0
0 −1

)
=

1

2
σz, (1.14)

where we have introduced the 2 × 2 Pauli matrices σx, σy and σz, and the factors of 1/2
are purely conventional (but convenient). How do I know we have enough generators? Any
2 × 2 Hermitian matrix can be written as a linear combination of these matrices (convince
yourself of this statement). We won’t prove it, but a general U(2) matrix can be obtained
by exponentiating these generators, U = exp(iαaXa).

We can now specify the Lie algebra of SU(2) by the commutators

[X0, Xa] = 0 (1.15)

[Xi, Xj] = iεijkXk, (1.16)

where a = 0, . . . , 3 and the indices i, j, k = 1, . . . , 3. The first equation says X0 commutes
with everything else ... no surprise since it’s the identity matrix. The second equation is the
same as the Lie algebra for SO(3) – more on that later.

These commutation relations tell us that we can get a new Lie algebra by dropping X0

entirely and just focusing on the three generators X1, X2 and X3. Notice that these three
generators are traceless Hermitian matrices. What Lie group do we get if we exponentiate
only these generators, that is if we consider those unitary matrices with U = exp(iαiXi)?
We get the group SU(2). Remembering that SU(2) is the group of unitary matrices with
unit determinant, this follows from the same determinant identity Eq. (1.3), and the fact
that the Xi are traceless.

More generally, U(N) has N2 generators. Why N2? This is because N × N Hermitian
matrices are specified by N2 real parameters – there are N real numbers giving the diagonal
matrix elements, and there are (N2−N)/2 independent complex numbers above the diagonal,
or equivalently N2−N real numbers. (The matrix elements below the diagonal are given in
terms of those above the diagonal by the requirement that the matrix is Hermitian.) So we
have a total of N2 real numbers.

As before, we can take one of the generators to be the identity matrix, and we can take
the other N2 − 1 to be some basis for traceless, Hermitian matrices. These N2 − 1 matrices
are the generators for SU(N). The difference between the U(N) and SU(N) Lie algebras
is relatively trivial – at least, it’s clear that if we can understand the SU(N) Lie algebra
then we’ve understood the U(N) Lie algebra, too. This is why people generally focus on
the SU(N) Lie algebra. Unlike for SO(N), we won’t try to write down an explicit set of
generators for SU(N), at least not yet.
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2 Representations of a Lie algebra

Remember that a Lie algebra is the commutator algebra

[Xa, Xb] = ifabcXc. (2.1)

While we introduced Lie algebras as commutator algebras of matrices, we can also think of
the Xa’s as some abstract objects satisfying the commutator algebra above. If one is really
going to do that (we are not), then we have to more carefully define what we’re talking
about, and specify what properties these abstract objects have. Nonetheless it’s helpful to
be aware of the existence of such a more abstract point of view to have a sense of what we
mean by representations of Lie algebras.

We know what it means to have a representation of a group. What does it mean to have
a representation of a Lie algebra? A representation of a Lie algebra is a set of Hermitian
matrices – we could call them Ma – with one matrix for each generator Xa, and satisfying
the same commutator algebra, i.e.

[Ma,Mb] = ifabcMc. (2.2)

Here we are not thinking abstractly – the Ma’s are a bunch of matrices and we’re looking at
their commutators. Even if we obtained the Xa’s as matrices, the Ma’s could be different.
For example, the Ma’s can be matrices of a different size than the Xa’s. If the matrices Ma

are d× d matrices, we say the representation has dimension d.
Just as for representations of groups, we can talk about reducibility / irreducibility of

representations of Lie algebras. A representation is reducible if it has an invariant subspace,
which is just a subspace of column vectors that goes into itself upon multiplying by any of the
matrices Ma. Irreducible reps (irreps) are those that are not reducible. Two representations
Ma and M ′

a are equivalent if there is a unitary matrix U such that M ′
a = U †MaU . (Since we

take the Ma to be Hermitian, we don’t want to consider a general similarity transformation.)
A representation is completely reducible if one can go to a basis where the Ma’s are block
diagonal (every matrix Ma has to have the same block structure), with Ma matrices for irreps
appearing in the blocks.

3 SU(2) vs. SO(3)

3.1 Double cover map

We’ve now seen that SU(2) and SO(3) have the same Lie algebra. But they are definitely
not the same group. A quick way to see that is to observe that SU(2) has two elements that
commute with all elements in the group, the 2×2 identity matrix I, and also −I, i.e. minus
the identity matrix. By contrast, the only element of SO(3) that commutes with everything
else is the identity matrix.

In fact there is a map from SU(2) to SO(3), which is said to give a “double cover” of
SO(3). All this means is that there are exactly two elements of SU(2) that map to each
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element of SO(3). To get an idea of how this map works, first recall that any SO(3) matrix
can be written

R = exp(iαaLa) = exp(iα α̂ · ~L) ≡ R(α, α̂), (3.1)

where I arranged the three generators into a vector ~L = (L1, L2, L3), and I am also thinking
of αa as a vector ~α = αα̂, where α = |~α| and α̂ is a unit vector. The interpretation here is
that R is a rotation by the angle α about the axis given by α̂. Note that rotation by 2π is
the same as no rotation at all; that is R(2π, α̂) = I.

Suggestively, we can also write a general SU(2) matrix as

U = exp
(iα

2
α̂ · ~σ

)
≡ U(α, α̂). (3.2)

But now, U(2π, α̂) = −I. In fact, more generally, U(α + 2π, α̂) = −U(α, α̂). This suggests
that we have a two-to-one map

U(α, α̂) 7→ R(α, α̂), (3.3)

where clearly U(α, α̂) and U(α + 2π, α̂) both map to the same SO(3) rotation matrix.
There is indeed such a map, and let’s describe how to obtain it, then give an explicit

formula. First of all I claim that, given any U ∈ SU(2), the following equation holds:

UσiU † = Rji(U)σj. (3.4)

Here i, j = x, y, z and there is an implied sum on the right hand side (as usual). (Note there
is a different placement of the indices from how I originally defined this in lecture – the reason
I changed conventions is to make things work out nicely later on.) This equation is saying
that UσiU † is a linear combination of Pauli matrices, with coefficients Rij(U). (It’s clear
that these coefficients are a function of U , because U is the only information we specify on
the left-hand side.) How to see that this is true. First, it is obvious that UσiU † is Hermitian
(just take the Hermitian conjugate). Second,

tr(UσiU †) = tr(σiU †U) = tr(σi) = 0, (3.5)

so UσiU † is both traceless and Hermitian. But any traceless, Hermitian 2 × 2 matrix can
be written as a linear combination of the Pauli matrices with real coefficients. Therefore
Eq. (3.4) is true, and Rji(U) ∈ R.

So far, from U we have obtained a set of 9 real numbers, Rji(U), which we can assemble
into a 3× 3 matrix R(U). We still need to show that R(U) is a rotation matrix, i.e. that it
is an element of SO(3). To do this we will use the Pauli matrix identity

σiσj = δijI2×2 + iεijkσ
k, (3.6)

where I2×2 is the 2 × 2 identity matrix. Then we will find two different expressions for
UσiσjU † and compare them. First,

UσiσjU † = U [δijI2×2 + iεijkσ
k]U † = δijI2×2 + iεijkUσ

kU †. (3.7)
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The second term is a linear combination of Pauli matrices, but we won’t need to simplify it
further. Alternatively we have

UσiσjU † = (UσiU †)(UσjU †) = Rki(U)R`j(U)σkσ` = Rki(U)R`j(U)[δk`I2×2 + iεk`mσ
m]

= Rki(U)Rkj(U)I2×2 + · · · = [R(U)TR(U)]ijI2×2 + · · · , (3.8)

where the · · · is a linear combination of Pauli matrices that we don’t need to examine. Setting
these two results equal, we have [R(U)TR(U)]ij = δij, or equivalently R(U)TR(U) = I3×3,
so R(U) is an orthogonal matrix, i.e. R(U) ∈ O(3).

We still need to show R(U) ∈ SO(3); at this point all we need to show is that detR(U) =
1. Rather than showing this directly, we can simply observe that since U = exp(i~α · ~σ/2),
we can continuously deform U to I simply by making ~α smaller and smaller. Since R is a
continuous function of U , and the determinant is a continuous function, detR(U) cannot
jump discontinuously as we change U in this way. Since the only two possible values of
detR(U) for an O(3) matrix are ±1, and since det I = 1, we must have detR(U) = 1.

Now in principle we are done – we’ve shown that Eq. (3.4), given U ∈ SU(2), produces
for us R(U) ∈ SO(3). It’s clear that R(U) = R(−U), because changing U → −U does not
affect the right-hand side of Eq. (3.4). It’s nice to go a bit further and obtain an explicit
formula for R(U) in terms of U . We can do this by multiplying both sides of Eq. (3.4) by a
Pauli matrix σk/2, and taking the trace. We have

1

2
tr
[
σkUσiU †] =

1

2
Rji(U) tr

[
σkσj

]
= Rji(U)δkj = Rki(U), (3.9)

where we used the fact that tr[σiσj] = 2δij. Rewriting this a bit more cleanly gives us the
formula we want:

Rij(U) =
1

2
tr
[
σiUσjU †]. (3.10)

3.2 Representations and projective representations

Now let’s discuss a different aspect of the relationship between SU(2) and SO(3). Because
the Lie algebras are the same, it is obvious that both the matrices La, and the matrices
σi/2, give representations of both Lie algebras. But what about representations of the two
groups? Obviously we have (1) a two-dimensional rep of SU(2) with matrices exp(i~α · ~σ/2),
and (2) a three-dimensional rep of SO(3) with matrices exp(iαaLa).

First, can we think about (2) as a rep of SU(2)? The answer is yes, and this is just an
application of the double-cover map. The group elements of SU(2) are 2×2 unitary matrices
U , and the double cover map gives us R(U) ∈ SO(3). To show this is a representation, we
need to show R(U1)R(U2) = R(U1U2). We can show this by evaluating U1U2σ

iU †2U
†
1 in two

different ways. First we have

U1U2σ
iU †2U

†
1 = (U1U2)σ

i(U1U2)
† = Rji(U1U2)σ

j. (3.11)
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Or instead we can write

U1U2σ
iU †2U

†
1 = U1(U2σ

iU †2)U †1 = U1[Rji(U2)σ
j]U †1

= Rji(U2)Rkj(U1)σ
k = [R(U1)R(U2)]kiσ

k. (3.12)

Setting these equal gives the desired result.
But can we think of (1) as a rep of SO(3)? The answer is “not quite,” but we can

if we generalize a bit what we mean by a representation. We need a function that, given
R ∈ SO(3), outputs U(R) ∈ SU(2). The problem is that there are two natural choices for
each R; we can take either U ∈ SU(2) that maps into R under the double cover map. That
is, if we choose U(R), then −U(R) is an equally good choice. But ok, let’s make some choice
arbitrarily.

The next thing to do is to understand what happens when we multiply U(R1) and U(R2).
It turns out that

U(R1)U(R2) = ω(R1, R2)U(R1R2), (3.13)

where ω(R1, R2) = ±1. For example, take R1 = R2 = R(π, ẑ), a rotation by π about the
z-axis. Then R1R2 = R2

1 = I. Taking U(R1) = U(R2) = exp(iπσz/2), we have

U(R1)U(R2) = exp(iπσz) = −I = (−1)U(R1R2). (3.14)

Note that we still get the −1 even if we made the other choice for U(R1).
Therefore what we have is not really a representation. But we can say the U(R) matrices

form a representation “up to a phase factor” ω(R1, R2) – that is, multiplying the U(R)’s
is almost compatible with the multiplication table of the group. There are “mistakes,” but
the mistakes only result in being off by a phase factor. So we have a kind of generalized
representation, which is referred to as a projective representation. We can thus say that we
have a two-dimensional projective representation of SO(3), given by the matrices U(R). In
quantum mechanics, projective representations show up all the time and are quite reasonable,
because the overall phase of a quantum state is not observable anyway. Of course the most
familiar projective representation in physics is the same one we’ve been discussing, which is
often referred to as the spin-1/2 representation of SO(3).

4 Irreducible representations of the SO(3) / SU(2) Lie

algebra

In quantum mechanics courses, you learn about the irreps of the SO(3) / SU(2) Lie algebra,
under the heading of theory of angular momentum. Therefore I don’t want to dwell on how
to find these irreps and know that you’ve found them all; instead I just want to list them and
describe some of their properties. You can find more details in Zee IV.2 or in your favorite
quantum mechanics book.

I’ll refer to the Lie algebra in question as the SO(3) Lie algebra, and denote the generators
by J1, J2, J3, which obey the commutation relations

[Ji, Jj] = iεijkJk. (4.1)
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The irreps are labeled by a single parameter j, which takes values j = 0, 1/2, 1, 3/2, . . . .
Let’s pick a value of j and describe the corresponding irrep. There are orthonormal basis
states {|j,m〉}, where m = −j,−j + 1, . . . ,+j. There are clearly 2j + 1 such basis states,
and the dimension of the representation is 2j + 1. This representation is sometimes called
the “spin-j” representation, especially when its physical origin is from electron spin, but
sometimes even when the states originate from some other degrees of freedom (e.g. orbital
angular momentum). We have to say how the operators Ji act on the basis states. We have

J3|j,m〉 = m|j,m〉; (4.2)

that is, the basis states are eigenstates of the J3 generator. It’s easiest to write down the
action of J1 and J2 by defining the raising and lowering operators J± = J1 ± iJ2, and these
act on the basis states by

J+|j,m〉 =
√

(j + 1 +m)(j −m)|j,m+ 1〉, (4.3)

and
J−|j,m〉 =

√
(j + 1−m)(j +m)|j,m− 1〉. (4.4)

From these equations it is straightforward to show that

~J2|j,m〉 = j(j + 1)|j,m〉, (4.5)

where ~J2 = J2
1 + J2

2 + J2
3 . It follows (or can be shown directly) that [ ~J2, Ji] = 0. In the

context of Lie algebras, this operator, whose eigenvalue tells us which irrep we are looking at,
is referred to as a Casimir invariant for the SO(3) Lie algebra. Other Lie algebras also have
Casimir invariants that commute with the generators and whose eigenvalue only depends on
which irrep one is looking at. Some Lie algebras have multiple Casimirs, but SO(3) only
has one, and in the SO(3) case, the Casimir eigenvalue uniquely tells us which irrep we are
looking at.

5 Adjoint representation

Every Lie algebra has a representation called the adjoint representation (and it turns out to
be an irrep at least for most of the Lie algebras we are considering). The way we construct
the adjoint representation is analogous to the way we got the double cover map from SU(2) to
SO(3). In fact our construction will give us the adjoint representation of the Lie group, and
then we will get the adjoint rep of the Lie algebra by taking infinitesimal transformations.

Consider a Lie algebra withN matrix generatorsXa and commutation relations [Xa, Xb] =
ifabcXc. Let U = exp(iαbXb), then I claim that

UXaU
† = Rba(U)Xb, (5.1)

where R(U) is a real N ×N matrix, and moreover R(U1)R(U2) = R(U1U2), i.e. R(U) gives
an N -dimensional representation of the Lie group.
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To see this claim is true, let’s consider a matrix-valued function

f(λ) = eλABe−λA, (5.2)

where A and B are square matrices and λ is a complex number. We can understand the
Taylor series for f(λ) about λ = 0 by computing derivatives. First we have f(0) = B. Next,

df

dλ
= Af(λ)− f(λ)A = [A, f(λ)]. (5.3)

Therefore the nth derivative is an n-fold nested commutator, for instance the second deriva-
tive is

d2f

dλ2
= [A, [A, f(λ)]]. (5.4)

We thus have the Taylor series

f(λ) = B + λ[A,B] +
λ2

2
[A, [A,B]] +

λ3

3!
[A, [A, [A,B]]] + · · · (5.5)

We can then apply this result to Eq. (5.1) with B = Xa and A = iαbXb, to see that
UXaU

† is also a series of nested commutators. The first two terms are

UXaU
† = Xa + i[αbXb, Xa] + · · · = Xa − αbfbacXc + · · · , (5.6)

and we see that we have a real linear combination of the generators. (It is not hard to
convince yourself this conclusion holds up to arbitrarily high order.) So we’ve shown that
R(U) is a real N ×N matrix.

Next, showing R(U1)R(U2) = R(U1U2) proceeds by exactly the same argument as when
we showed this for the double cover map. We won’t repeat it again because it’s really exactly
the same.

Now that we have a real N -dimensional rep of the Lie group, let’s consider infinitesimal
transformations and get the corresponding N -dimensional rep of the Lie algebra. We let
U = I + iαbXb, and then Rab(U) = δab + iαc(T

c)ab, where the matrices T c are the generators
of the adjoint rep that we’d like to find. Plugging this into Eq. (5.1) we get

(I + iαbXb)Xa(I − iαcXc) = Xa + iαc(T
c)baXb (5.7)

Expanding the left-hand side to first order in α we have

(I + iαbXb)Xa(I − iαcXc) = Xa + i[αbXb, Xa] = Xa − αbfbacXc = Xa − αcfcabXb (5.8)

Matching these two results gives

(T c)ba = ifcab = −ifacb. (5.9)

So we’ve found a representation of the Lie algebra whose matrices are given by the structure
constants. It’s actually not obvious from what we’ve done that these matrices are Hermitian
(and the corresponding representation of the Lie group is unitary). The right statement is
that it’s possible to choose a basis for the generators Xa that makes the T c matrices Her-
mitian, which also implies that in this cases fabc = −facb. Since the structure constants are
already antisymmetric in the first two indices, making them anti symmetric in the second two
indices makes them completely antisymmetric! Often people choose the structure constants
to be completely antisymmetric.
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6 SO(N) tensors

In terms of applications, so far we’ve mainly thought about representations as coming from
the action of symmetry on the Hilbert space of a quantum system. For instance, irreps
arise as multiplets of degenerate energy eigenstates. But this is not the only way that
representations show up in quantum systems – observables can also form representations of
a symmetry group. Understanding how observables transform under symmetry is important
e.g. for selection rules which we will come to later. At the same time, thinking along these
lines we will find a large family of irreps of SO(N).

A familiar example is the position operator xi (i = 1, 2, 3) of a quantum particle in three
dimensions. Of course, SO(3) rotation is a symmetry of many familiar systems in single-
particle quantum mechanics, e.g. the hydrogen atom. Under a rotation R ∈ SO(3), the
position operator changes by

xi → Rijxj. (6.1)

We can express this situation by saying “xi transforms as a representation of SO(3).” To
be a bit pedantic, we can think of xi as a three-component column vector and write the
transformation Eq. (6.1) as x1

x2
x3

→
 x′1

x′2
x′3

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 x1
x2
x3

 . (6.2)

My point in writing things this way is just to make it clear that we are thinking of xi as a
column vector in a three-dimensional vector space, and R is a 3× 3 matrix acting on these
column vectors

We can also express this situation by saying that xi is a SO(3) tensor. In general, a
SO(N) tensor is just a representation where the “column vectors” are objects carrying some
number of indices, and each index gets rotated independently of the others using a matrix
R ∈ SO(N). If that statement does not make sense yet, that’s fine, it’s easier to understand
what we mean by a tensor by looking at some examples.

A particularly simple SO(N) tensor (or, we can also say SO(N) tensor rep) is the vector
vi (i = 1, . . . , N). For example, vi could be the position operator of a particle moving in
N -dimensional space. Under a SO(N) rotation R ∈ SO(N), vi transforms by vi → Rijvj.
Clearly we can think of vi as an N -component column vector, and vi transforms as an N -
dimensional representation rep of SO(N). Of course this is just the familiar rep of SO(N) in
terms of N ×N SO(N) matrices. We often refer to this rep as “the vector rep of SO(N).”

The vector rep is irreducible for N > 2. For N = 3, note that the vector rep is the same
as the j = 1 rep, and also the same as the adjoint rep. Remember that the dimension of
the adjoint rep is always the same as the number of generators, which is N(N − 1)/2 for
SO(N), and this happens to equal 3 when we put N = 3. But for N > 3, the dimension of
the adjoint rep is larger than N , and the adjoint rep is not the same as the vector rep.

Now let’s move on to something a little more interesting. We consider a 2 index tensor
Tij, where i, j = 1, . . . , N . There are N2 different choices for the pair of indices i and j, and

11



this tensor has N2 independent components. That is, thinking of each Tij as a real number,
we have a set of N2 independent real numbers. Under R ∈ SO(N), this tensor transforms
by

Tij → T ′ij = RikRj`Tk`. (6.3)

This is what we mean when we say “each index gets rotated independently of the others.”
Note that without Eq. (6.3), it would not be correct to say Tij is a tensor. When we say
something is a tensor, we do not only mean that it some object with a bunch of indices. We
also imply something about how those indices transform under some symmetry group.

A quick point about terminology: we say Tij is a rank-2 tensor, because it has two
indices. The vector vi is a rank-1 tensor. The rank of a SO(N) tensor is just the number of
its indices. By the way, there is a rank-0 tensor, the scalar representation. This tensor has
a single component s, which does not change under a rotation, s→ s. The scalar rep is the
same as the one-dimensional trivial rep.

It was pretty obvious that the vector gives us a representation of SO(N), thinking of vi as
a column vector. But looking at Eq. (6.3) this may be less obvious. In fact, Tij transforms as
a N2-dimensional rep of SO(N). We can rewrite Eq. (6.3) by thinking about Tij as forming
a big column vector with N2 elements, and it gets multiplied by a big N2×N2 matrix whose
entries are products of matrix elements of R. That is,

T ′11
T ′12
T ′13
...

 =

 R11R11 R11R12 · · ·
R11R21 R11R22 · · ·

...
...

. . .




T11
T12
T13
...

 . (6.4)

This makes it clear that we can think of Tij as giving us a N2-dimensional rep of SO(N).
Actually, if we want to be careful we should check that the matrices of thisN2-dimensional

rep satisfy the usual rule D(g1)D(g2) = D(g1g2). To do that, consider two rotations R1, R2 ∈
SO(N). We consider two ways of transforming Tij: (1) We first transform by R2, and then
by R1. (2) We transform all at once using the product R1R2 ∈ SO(N). If these two ways of
transforming Tij agree, then we in fact have a representation. Let’s do (1). We have

Tij → T ′ij = R2
ikR

2
j`Tk`, (6.5)

followed by

T ′ij → T ′′ij = R1
ikR

1
j`T
′
k` = R1

ikR
2
kmR

1
j`R

2
`nTmn = (R1R2)im(R1R2)jnTmn. (6.6)

This is the same as what we get if we do (2).
The next question to ask is whether the rank-2 tensor Tij is irreducible. It turns out that

it is reducible. We can see this by writing Tij as a sum of symmetric and antisymmetric
tensors. We define

T Sij =
1

2

(
Tij + Tji

)
, (6.7)
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which is clearly a symmetric rank-2 tensor, i.e. T sij = T sji. We also define

TAij =
1

2

(
Tij − Tji

)
, (6.8)

which satisfies TAij = −TAji ; that is, this is an antisymmetric tensor. We have

Tij = T Sij + TAij . (6.9)

We need to check that T Sij and TAij actually transform like tensors under SO(N). Let’s
look at T Sij . We have

T Sij =
1

2

(
Tij + Tji

)
(6.10)

→ 1

2

(
RikRj`Tk` +Rj`RikT`k

)
(6.11)

= RikRj`T
S
k`, (6.12)

so indeed T Sij is an SO(N) tensor. (Note that I chose the names for the dummy indices
judiciously on the second line – if I didn’t make a nice choice in advance, I could have always
just renamed dummy indices as needed.)

It is easy to check that the same result holds for the antisymmetric tensor, that is

TAij → RikRj`T
A
k`. (6.13)

What we’ve seen so far is that the symmetric tensor goes into itself under SO(N) trans-
formations, and similarly for the antisymmetric tensor. This implies that the tensor Tij is
a reducible rep – we have reduced it into its symmetric and antisymmetric parts. Thinking
of Tij as a N2-component column vector again, writing Tij in terms of symmetric and an-
tisymmetric parts gives a change of basis, where now in our column vector we first list all
the independent components of T Sij in the column vector, then we list all the independent
components of TAij : 

T S11
T S12
...
TA12
TA13
...


(6.14)

Because the symmetric and antisymmetric parts of Tij don’t “mix” under SO(N) transfor-
mations, our discussion above implies

T S11
T S12
...
TA12
TA13
...


→
(
RS 0
0 RA

)


T S11
T S12
...
TA12
TA13
...


, (6.15)
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where RS and RA are square matrices encoding the SO(N) transformations of the symmetric
and antisymmetric parts, respectively. Writing things out this way makes it clear that we
have reduced the Tij tensor rep.

6.1 Rank-2 antisymmetric tensor

It turns out that the antisymmetric tensor TAij is an irrep – we won’t try to prove this. In
fact, this is the same as the adjoint rep. Remember that for SO(N), the adjoint rep is given
by

Xa → RXaR
T , (6.16)

where the Xa are the imaginary antisymmetric matrices generating SO(N), which should be
thought of as basis vectors for the adjoint rep. A general real antisymmetric matrix TA can
be written as a linear combination

TA = i
∑
a

taXa, (6.17)

where ta are real parameters. Therefore we can think of TA as transforming in the adjoint
rep by

TA → i
∑
a

taRXaR
T = RTART . (6.18)

But this is exactly how the tensor TAij transforms if we view it as a N ×N matrix; we have

TAij → RikRj`T
A
k` = RikT

A
k`Rj` = RikT

A
k`R

T
`j = (RTART )ij. (6.19)

For N = 3 something special happens with TAij . We can contract the antisymmetric
tensor with the epsilon tensor to get εijkT

A
jk. It looks like – and it can be checked – this

transforms like the vector rep. So for N = 3 the rank-2 antisymmetric tensor is the same as
the vector (and it’s also the same as the adjoint rep). Another way to understand this is to
make the familiar observation that if ~v and ~w are two SO(3) vectors, then the cross product
~v × ~w, which is an antisymmetric combination of the two vectors, is another SO(3) vector.
In equations,

(~v × ~w)i = εijkvjwk =
1

2
εijk(vjwk − vkwj). (6.20)

6.2 Rank-2 symmetric tensor

It turns out that the rank-2 symmetric tensor T Sij is reducible. To see this, we observe that
we can make a scalar rep out of T Sij , by contracting it with δij. That is we have

δijT
S
ij → δijRikRj`T

S
k` = (RTR)k`T

S
k` = δijT

S
ij . (6.21)

Contracting δij with T Sij is called “taking the trace” of T Sij , and of course this is the same as
taking the trace if we view T Sij as a matrix. This terminology is used a bit more generally
with tensors, though, as we’ll see below.
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To completely reduce T Sij , we need to write it as a linear combination of a scalar part,
and a traceless part. The traceless part is

T̃ Sij = T Sij −
1

N
δijδk`T

S
k`, (6.22)

and it can be checked that δijT̃
S
ij = 0. It turns out that this is an irreducible tensor. We can

write T Sij as the linear combination

T Sij = T̃ Sij +
N − 1

N
δijδk`T

S
k`, (6.23)

where the second term transforms like a scalar.
To summarize, now we have completely reduced the rank-2 tensor Tij, which decom-

poses into three irreducible tensors: the rank-2 antisymmetric tensor, the rank-2 traceless
symmetric tensor, and a scalar.

For N = 3, it turns out that T̃ Sij is the same as the j = 2 irrep. One way to guess this is
true is to count the number of independent components (see below), and observe there are
five components, which is the same as 2j + 1 = 2 · 2 + 1 = 5. (To prove this, we could think
in terms of angular momentum addition, and observe that we get a spin-2 upon taking a
symmetric combination of two spin-1’s. But we aren’t going to discuss this for lack of time.)

6.3 Higher-rank tensors

We can keep going with similar ideas to construct higher-rank irreducible tensors. For
instance a rank-3 completely antisymmetric tensor TAijk is irreducible. “Completely antisym-
metric” means that we get a minus sign upon exchanging any pair of indices, e.g.

TAijk = −TAjik = −TAikj = −TAkji. (6.24)

Similar to the rank-2 case, a rank-3 completely symmetric tensor T Sijk is not irreducible,
because we need to “subtract out the trace.” First of all, for T Sijk to be completely symmetric
means

T Sijk = T Sjik = T Sikj = T Skji, (6.25)

from which it follows that we can permute the indices however we want. But the trace δijT
S
ijk

transforms like the vector rep, and we’d like to subtract this out to get a rank-3 traceless
symmetric tensor T̃ Sijk satisfying δijT̃

S
ijk = 0. (Notice that while we took the trace on the

first two indices, this doesn’t matter – because T Sijk is symmetric, we will get the same tensor
no matter which two indices we trace over.) The irreducible tensor we want is given by the
following expression:

T̃ Sijk = T Sijk −
1

N + 2

(
δijδ`mT

S
`mk + δikδ`mT

S
`mj + δjkδ`mT

S
`mi

)
. (6.26)

Something different from the rank-2 case is what happens if we try to reduce a rank-3
tensor Tijk with no symmetry properties what soever, here we have

Tijk = T Sijk + TAijk + · · · , (6.27)
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where the “· · · ” is non-zero, and includes tensors with definite patterns of symmetry of the
indices which are neither completely symmetric nor completely antisymmetric. Indeed, to
find all the irreducible tensors at rank-3 and above we would need to consider such tensors
of more complicated symmetry, but we won’t do that in this course.

6.4 Counting independent components

Now we’ve that we’ve discussed a number of tensor reps of SO(N), including a number of
irreducible tensors, you might wonder what are the dimensions of all these reps. Put another
way, how many independent components do all these tensors have? Finding the dimensions
of irreps (or, equivalently, counting the number of independent components of an irreducible
tensor) is important in physics applications. Here is one reason this is important: in particle
physics, when one has a Lie group symmetry G, irreps of G can correspond to multiplets of
particles all with the same mass (or, if the symmetry is approximate, with approximately
the same mass). Group theory has been used to explain such multiplets of particles. At
the same time, experimentally finding and then understanding such multiplets in terms of
symmetry has shed light on symmetries (and approximate symmetries) in particle physics,
and this has helped to constrain the development of theories and lead to further predictions.
The importance of this role of group theory in particle physics is even built into the common
physicist’s notation of referring to irreps by their dimensions.
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