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I. INTRODUCTION

In condensed matter physics we aim to understand the nature of condensed phases and

transitions between them, utilizing methods of statistical mechanics and field theory. As we

have seen, all of the thermodynamic information is contained in the partition function, Z =

Tr{Si}[e
−βH[{Si}]], that is a Boltzmann-weighted trace over microscopic degrees of freedom.

It is often useful to compute the latter for a particular set of macroscopic observables, that

are functionals of microscopic ones.

However, for most, even idealized model systems the exact trace cannot be directly

carried out and requires physically insightful approximation. Fortunately, properties of con-

densed matter phases and transitions exhibit considerable universality that is independent

of details of microscopic models. This allows one to fruitfully trade a trace over microscopic

degrees of freedom, e.g., Si to one over fluctuating continuum coarse-grained fields, ~φ(x),

defined on mesoscopic scales, as we have done explicitly in Lecture set 2. The resulting ef-

fective field theory, Z =
∫
D~φ(x)e−βHeff [~φ(x)], defined by effective local free-energy functional

requires a functional integral over fully fluctuating coarse-grained fields (that we will study

in the next lecture 4, Field Theory Primer), and is thus still typically quite challenging to

analyze exactly.

A simplest tractable approximation is the Landau’s mean-field theory, that treats these

fields as nonfluctuating and often uniform in space (although this latter approximation is

unnecessary)[1, 4, 6, 7, 14]. In these lectures we will take this approach. We will construct

Landau theories for a variety of systems and will explore their predictions. We will conclude

with the analysis of the breakdown of Landau theory due to strong fluctuations, typically

present near a continuous phase transition, and will thereby determine the range of validity

of the mean-field theory.

Landau theory approach consists of (i) identifying the symmetry of the system, denoted

by group G, (ii) identifying order parameter φ, invariant under group H, that qualitatively

distinguishes ordered state from the disordered state, and (iii) constructing a Landau func-

tional of φ that satisfies all the underlying symmetries. Going back to Landau and up until

quite recently, it used to be thought that all phases of matter and associated transitions were

completely classified by this Landau theory construction, characterized by various patterns

of symmetry breaking, with H a subgroup of G, H ∈ G. However, it is now well understood,
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that there are rich variety of phases of matter, such as the quantum Hall states, spin liq-

uids, Fermi liquid, etc., that are not subject to Landau classification. These states usually

exhibit “topological nature”, that is used for their classification, and are thus referred to as

topological states of matter. We leave the discussion of these more exotic states to other

courses, and refer the student to many excellent expositions, most notably lectures by X. G.

Wen, one of the main architects of the subject.[28]

II. LANDAU THEORY OF PHASE TRANSITIONS

A. General Landau approach

Instead of deriving the effective free energy from a microscopic lattice theory (which

most of the time is not rigorously possible nor is microscopic theory always known or can be

literally trusted), Lev Landau (1937) made a bold and physically insightful proposal of simply

writing down the answer. Namely, in treating a phase transition, one must first identify the

so-called “order parameter” local field, ~φ(x) (a generic name at this point, representing e.g.,

the local magnetization at the PM-FM transition), that qualitatively distinguishes the two

phases of matter, vanishing in the disordered (e.g., high T > Tc) state and nonzero in

the ordered (e.g., low T < Tc) state. Then, guided by the underlying symmetries of the

disordered phase, we then construct a Landau functional H[~φ(x)] (an effective Hamiltonian,

a local free-energy functional) that satisfies these symmetries. Because we are focussed on

the vicinity of a continuous or weakly first-order phase transitions, where the order parameter

remains small, we take the Landau functional to be a local, analytic expansion in powers of

the order parameter, limiting it to lowest qualitatively necessary order,

H[~φ(x)] =

∫
x

[
1

2
K(∇~φ)2 +

1

2
t|~φ|2 +

1

4
u|~φ|4 +

1

6
v|~φ|6 + · · · − ~h · ~φ

]
. (1)

Near Tc the corresponding coefficients (couplings) can all be taken to be constant smooth

functions of temperature (ultimately determined experimentally), except for the quadratic

coefficient, t(T ), that drives the transition changing sign at Tc and thus can be generically

be taken to be a linear function, t(T ) ≈ a(T − Tc). This is consistent with our lecture 2

findings, based on explicit calcualtions for the Heisenberg model for the PM-FM transition,

where in particular we found t(T ) ∝ 1− J0/kBT .
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It is important to remember that even though for computational convenience, we write

everything in the continuum, in reality, in any physical system there is a short scale ”UV”

cutoff a, set by lattice spacing and a large scale ”IR” cutoff L, set by system size, with

a � x � L. Because 1
2
K(∇~φ)2 term keeps ~φ(x) smooth and nearly uniform in space,

most of the time, a, L will not play an important role, but are there to make the model

well-defined.

Within the Landau description, (rather than integrating over ~φ(x)) we simply minimize

the Landau functional, H[~φ(x)] with respect to the order parameter, thereby determine its

value ~φ0(x,~h, T ) as a function of temperature T and the external field, e.g., ~h, thereby

obtaining the equation of state.

B. A non-uniform solution to a generalized Landau theory

In the presence of nonuniform boundary conditions, as an example, illustrated in Fig.1,

even a mean-field Landau treatment can be quite nontrivial, requiring a solution of a differ-

FIG. 1: Non-uniform boundary condition

ential Euler-Lagrange (EL) equation (specializing to the Ising, N = 1 case),

δH

δφ(~r)
= 0 = −K∇2φ + tφ(~r) + uφ3. (2)

We take the boundary conditions to be T � Tc for x < 0, with φ(x < 0) = 0, and T � Tc

for x > 0, pinning φ(x → +∞) = φ0 =
√
|t|/u at positive infinity.

The full solution, pinned by these boundary conditions also satisfies EL differential

equation,

K∂2
xφ + |t|φ− uφ3 = 0. (3)
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Because of 1d nature of the boundary conditions and the corresponding solution, this equa-

tion can be solve exactly by noting that it corresponds to a mechanics problem of a “fake”

particle of “mass” K, at a one-dimensional position φ(x), moving in time x in an inverted

quartic potential V (R) = −VLandau(φ) = 1
2
|t|φ2 − 1

4
φ4, starting at the origin with “kinetic”

energy E, sufficient to just climb to the top of the “hill” at a time x →∞,

FIG. 2: A soliton solution satisfying above boundary conditions is captured by a position φ(x) of a

“particle”moving in an effective potential V (φ) = −VLandau(φ), starting at the origin with “kinetic”

energy E, sufficient to just climb to the top of the “hill” at a time x →∞.

K∂2
xφ = −δV

δφ
. (4)

For a judiciously chosen E we know by mechanical analogy that such solution exists and

can be obtained by utilizing an intergral of motion associated with conservation of energy,

K∂xφ∂2
xφ = −δV

δφ
∂xφ = −∂xV (φ(x), (5)

∂x

[
1

2
K(∂xφ)2 + V (φ)

]
= 0, (6)

which gives

1

2
K(∂xφ)2 +

1

2
|t|φ2 − 1

4
φ4 = E. (7)

Solving for ∂xφ(x), the resulting first-order differential equation separable and can be inte-

grated exactly, with E chosen so φ(x) satisfies above boundary conditions. The resulting

solution is given by

φ(x) = φ0 tanh[x/(
√

2ξ)], (8)

with the mean-field correlation length, ξ(t) =
√

K/|t| ∼ |t|−1/2, giving νMF = 1/2. The

latter scaling with K and t could have been read off from the Landau functional, (1) simply
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by dimensional analysis. The correlation length is the scale over which the order parameter

varies in space, and as expected, diverges as T → Tc.

An alternative way to find a mean-field correlation length, ξ, is to consider a solution

φ(x) in the disordered phase, T > Tc (t > 0) with a delta-function source at the origin, i.e.,

a Green’s function to the harmonic (linear) approximation to the Landau Euler-Lagrange

equation above,

−K∇2φ0 + tφ0 = h0δ
d(x), (9)

which gives the solution, illustrated in Fig.3,

φ0(x) ' h0
e−x/ξ+

x
, (10)

with ξ+ ≈
√

K/t, illustrated in Fig.4.

FIG. 3: Saddle point solution φ0(x), Green’s function in the disordered t > 0 phase.

FIG. 4: Length scale on which φ(x) varies ξ(T )
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C. Examples of Landau theories and their applications

We will now use above Landau description to analyze a number of phases and asso-

ciated phase transitions. In a thermodynamic limit, with free boundary conditions, ~φ0(~h)

is spatially uniform. The free energy is then simply given by F (~h, T ) = H[~φ0], and other

thermodynamic quantities, such as the entropy, heat capacity, susceptibility, etc., are com-

puted as derivatives with respect to the corresponding parameters, T , ~h, etc. We emphasize

that despite an analytic structure of Landau theory as a function of the order parameter,

it will produce a nonanalytic behavior (singularities) of thermodynamic observables and of

correlation functions.

As we will see below, while the detailed structure (nature of the order parameter, sym-

metries, etc.) will depend on the specific phase transition, the critical exponents will be

super-universal, given by their MFT values of α = 0 (heat capacity as function of t), β = 1/2

(order parameter as function of t), γ = 1 (susceptibility as function of t), δ = 3 (order pa-

rameter as function of h), ν = 1/2 (correlation length exponent as function of t), η = 0

(order parameter correlator as function of momentum q). Consistent with experiments, we

will demonstrate in the following lectures that this MF super-universality does not survive

fluctuations and in fact, while universal (independent of many microscopic model details),

the exponents are determined by a universality class that depends on the dimensionality of

space and symmetry of the system.

1. Ising PM-FM transition

As discussed in lecture 2, in real magnets the full spin rotational invariance of the

Heisenberg model often reduces to a single scalar (N = 1) component order parameter,

φ = m, that represents the magnetization density m. In the absence of an external magnetic

field the system exhibits Ising Z2 symmetry, H[m] = H[−m], that requires the Landau

free-energy density to be restricted to an even power-law series in m,

H[m] =
1

2
tm2 +

1

4
um4 +

1

6
vm6 + . . . . (11)

For a weak external field h above is supplemented by a Zeeman term −hm. Minimizing this

Landau free energy density over m, the saddle-point equation δH/δm = 0 gives the equation
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of state,

tm0 + um3
0 ≈ h, (12)

For a vanishing external field, h = 0, we find

m(t, h = 0) =

 0, for t > 0 (T > Tc),

±
(
− t

u

)1/2 ∝ |t|β, for t < 0 (T < Tc),
(13)

where it can be verified that the m0 = 0 solution for T < Tc has a higher free energy and

is in fact a local maximum. Thus, indeed the magnetization m0(T ) exhibits a nonanalytic

behavior as a function of temperature across Tc.

The more general solution m0(T, h) at finite h is schematically illustrated in Fig.5, show-

ing that it is always finite at all T . At Tc this gives m0 ∼ h1/δ, with the mean-field value of

δMF = 3.

The free energy density is obtained by evaluating f(T, h) = Min [H[m0(T, h), h]], which

for h = 0 gives,

f(t, h = 0) =

 0, for t > 0 (T > Tc),

− t2

4u
∝ |T − Tc|2, for t < 0 (T < Tc),

(14)

illustrated in Fig.6. The corresponding entropy and heat capacity are also straightforwardly

computed, giving

S(T ) = − ∂f

∂T
∼ −|t|, (15)

and

Cv = −T
∂2f

∂T 2
= T

∂S

∂T
=

 0, for T > Tc,

Tc

2u
, for T < Tc.

(16)

latter displaying jump-discontinuity. I emphasize, that, while there are many sources of T

dependence in f(T ) (entering through β and all the coupling constants in the Landau Hamil-

tonian functional), the singular behavior is dominated by the dependence via the “reduced”

temperature t. Thus, in computing T derivatives, for singular leading contributions only

derivatives with respect to t need to be taken into account.
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FIG. 5: (top) Magnetization as a function of temperature T for small nonzero external magnetic

field H for various samples with varying Tc. Notice small nonzero magnetization (induced by H)

even above Tc. (bottom) Magnetization as a function of H for T < Tc showing finite spontaneous

magnetization even as H → 0, as well as the hysteresis for a finite rate of changing magnetic field,

faster than the transition rate between the two magnetizaiton minima.

The magnetic linear susceptibility χ`(T ) ≡ ∂m
∂h
|h=0 can be computed by differentiating

the equation of state, tm + um3 = h,

(t + 3um2)
∂m

∂h
= 1, (17)

solving for χ` in the limit of h → 0, and using the expression for the magnetization m(t, h =
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FIG. 6: Free energy density as a function of temperature, showing nonanalyticity around Tc.

0) obtained above. We thus find

χ`(t) =

 1
t

, for T > Tc ,

1
2|t| , for T < Tc ,

(18)

(19)

that, more explicitly, below Tc gives

χ` ∼ |T − Tc|−γ , with γMF = 1. (20)

I note that this generic form is qualitatively correct in all dimensions (with exponent γ(d) a

function of dimension of space, d) except in d = 1, where the FM phase and the associated

Ising transition are unstable at finite T .

We will return to this question of stability of an ordered phase more generally and

thoroughly in following lectures. However, we do note here in passing, that the 1d Ising FM

phase is destabilized by domain-walls (kinks),

kink : . . . ↑↑↑↑↑↑↓↓↓↓↓↓ . . . .

Because these have a finite excitation energy, ∆Ekink ≈ 2J , the probability for them to be

thermal activated at any one of N sites (since can occur in N places), is given by

Pkink ≈ Ne
− 2J

kBT , (21)

which is always finite for T > 0. The kink density is thus given by nkink ≈ e
− 2J

kBT , corre-

sponding to a finite distance between kinks, i.e., a finite FM correlation length, ξ = e
2J

kBT

at any nonzero temperature. The FM state at finite T is thus unstable in 1d. In contrast,

in d dimensions the domain-wall energy goes as Edw = 2J(L/a)d−1 and thus diverges in the
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thermodynamic limit, ensuring a stability of the d > 1 Ising (and more generally discrete,

Goldstone-mode-free) model to thermal fluctuations. Systems that break continuous sym-

metries and therefore exhibit Goldstone modes require a separate analysis, that will occupy

us in subsequent lectures.

Finally, I note that for T < Tc the transition as a function of the magnetic field h is first

order. It corresponds to a jump of magnetization between the two minima at ±m0(T ), with

symmetry between them broken by h 6= 0. The jump discontinuity vanishes as T → Tc.

2. Liquid-gas transition near a critical point

Physically, liquid and gas phases appear to be quite different, strongly- and weakly-

interacting, respectively. In fact these differences are only quantitative, with both phases

disordered and ergodic, with former appearing at high and latter at low densities. We

thus introduce a natural order parameter, a density difference between the two phases,

δρ(T ) ≡ ρliq − ρgas.

FIG. 7: Order parameter for a liquid-gas transition near the critical point, and the critical boundary

Tc(P ), across which δρ jumps, and a continuous transition takes place at the critical point C.

At fixed pressure, P and high temperature, T > Tc(P ), the densities of the two phases

are the same, ρliq = ρgas, corresponding to a vanishing order parameter, δρ = 0. For T <
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Tc(P ), there is a condensed high-density liquid and low-density gas phases, with ρliq > ρgas,

with δρ(T, P ) > 0. This condensation of a liquid below the critical point C, finely-tuning

P, T to follow tangetially along the critical curve Tc(P ) (see Fig.7) is the liquid-gas (L-

G) analog of the PM-FM phase transition, and δρ the counterpart of the magnetization

density (difference between spin up and spin down densities), discussed in the previous

subsection. The important qualitative difference is that unlike the PM-FM transition, where,

for the coexistence curve h = 0, Ising ±m symmetry ensures that the critical transition is

continuous, for L-G transition, there is no such natural simple curve and P, T must be finely

tuned to cross the critical point C tangentially. If instead the Tc(P ) boundary is not crossed

tangentially, then the transition is first-order akin to h-tuned transition in ferromagnet for

T < Tc.

As for a FM, near the critical point C, we expand the free energy density functional

f [δρ] in powers of the order parameter, the density difference, δρ,

f [δρ] ≈ f0 + h(T, P )δρ +
1

2
t(T, P )δρ2 − 1

3
w(T, P )δρ3 +

1

4
u(T, P )δρ4, (22)

which when approached tangentially along the coexistence curve, through C (h(Tc(P )) =

w(Tc(P )) = 0) takes the form of the free energy density for an Ising PM-FM transition.

More generically, at low T < Tc f [δρ] allows for odd terms in δρ and therefore exhibits

two minima, whose relative value determines the thermodynamic state and corresponding

density difference.

Thus, along the coexistence curve the phase transition is of Ising universality class, that

in MFT exhibits the very same exponents as found in the previous subsection. Instead,

crossing this coexistence foundary, gives a first-order transition between liquid and gas.

Near this transition, the compressibility (the analog of magnetic susceptiblity) defined

by χ−1 ≡ ∂2f
∂ρ2 , diverges as

χ ∼ |t|−γ , with γMF = 1 (23)

near the critical point C. This corresponds to the fact that the system is infinitely easy to

compress at Tc(Pc), since at C it does not “care” at what density to be, ρgas or ρliq. Namely,

infinitesimally small compressional pressure, δh leads to a finite changes in the density ρ.

I note that compressibility χ is also related by fluctuation-dissipation theorem[7] to

the variance of density fluctuations, χ ∼ 〈δρ2〉. As a result, near a critical point density
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FIG. 8: (top) Free energy density near the L-G transition with two minima corresponding to a

liquid and a gas and T, P controlling which of the two minima is the lowest. (middle) General form

of odd Landau theory around a first-order transition. (bottom) Free energy density tuned through

a critical point for (T > Tc), where there is no (even quantitative) distinction between a liquid and

a gas, and T < Tc, where liquid and gas have different densities.
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fluctuations are large, and manifest themselves in light scattering (through fluctuations of

the dielectric constant, ε) and critical opalescence, These critical properties near C have

FIG. 9: The phenomenon of critical opalescence.

been studied extensively in large variety of experiments and are summarized in Fig.10.

FIG. 10: Experiment vs. Landau theory for liquid-gas transition.

3. Normal-to-superfluid transition: XY-model

Most fluids when cooled freeze into a crystal or a glass, long before the degeneracy

temperature below which quantum statistical effects begin manifest. However, for lighter

elements like the bosonic isotope of Helium, He-4, quantum fluctuations are strong prevent-

ing solidification. Instead, below the degeneracy temperature, Tc, He-4 undergoes a phase

transition from a normal fluid to a superfluid.

Although generally the superfluid phenomenon is complicated by strong interactions in
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FIG. 11: Phase diagram for Normal-to-Superfluid transition.

the fluid, the key ingredient of superfluidity (outside of two-dimensions) is captured by Bose-

condensation. The latter corresponds to bosonic atoms all macroscopically occupying the

same single-particle state Ψ(x), that in a thermodynamic limit is a zero-momentum ground

state. In the trapped degenerate atomic Bose gases realization of BEC, the single particle

state is a ground state of the trap potential. The corresponding many-body wavefunction

for N bosons is then given by ΨN(x1,x2, . . . ,xN) =
∏N

i Ψ(xi).

Thus, the transition into a simplest (there is a rich variety of more exotic superfluid

states, requiring more complicated order parameters) superfluid is characterized by a com-

plex scalar order parameter, Ψ = |Ψ|eiθ = Ψreal + iΨimag. The square of the amplitude |Ψ|2

captures the density of Bose-condensed atoms and spatial gradients of the superfluid phase

θ give the mass superflow current. Since an overall phase of a quantum wavefunction is

not a physical observable, the Landau functional must be invariant under global U(1) gauge

transformations, θ → θ + θ0, involving only powers of |Ψ|2, and is thus given by,

H[Ψ] = t|Ψ|2 + u|Ψ|4 + . . . . (24)

Since |Ψ|2 = Ψ2
real + Ψ2

imag, this U(x) symmetric model is isomorphic to the O(2) rotation

symmetric XY-model with ~φ = (Ψreal, Ψimag), as the order parameter with the phase shift

invariance corresponding to the rotation of the two-component “spin” ~φ. The XY model in

terms of ~φ, describing e.g., a planar ferromagnet requires that the Landau functional only

involves dot-products of ~φ, ensuring O(2) rotational invariance.

To make contact with your basic knowledge of BEC, recall that for BEC the condensate

fraction N0/N , which we identify with |Ψ|2 below Tc = TBEC grows as

|Ψ|2 =
N0

N
∼ 1−

(
T

Tc

)3/2

∼ |Tc − T |, (25)
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consistent with our mean-field scaling of the order parameter with βMF = 1/2.

In addition to these type of bosonic superfluids, where atoms are strongly bound

“molecule” of fermions (protons, neutrons, electrons), there are weakly-paired superfluids

as in e.g., degenerate gases of fermionic atoms that pair via the so-called Feshbach reso-

nance into a weakly bound Cooper pair, with the bosonic pairs then Bose condensing into

a single-particle state Ψ. Solid-state superconductors are charged version of this phenom-

ena, electrons weakly pair into charged Cooper pairs and at mean-field level are also well

described by above XY model for Ψ. The qualitatively important difference is that charged

Cooper pairs respond to magnetic field and thus require an inclusion of minimal gradient

coupling to the corresponding gauge vector potential A, which will will explore in later

lectures.

The key new ingredient exhibited by the XY (and more generally an O(N) vector)

model but not by the scalar Ising model is the appearance of Goldstone modes, that at

zero momentum are zero-energy excitations, correspond to global reorientation of the order

parameter, under which the Landau functional is invariant by construction of the model. In

terms of the Fig.12 it corresponds to the change of the order parameter along the minimum

of the “Mexican hat” potential,

Since such global excitations cost zero energy, such excitations at a finite wavevector

will have very low energy, that will vanish in the limit of wavevector going to zero. Thus,

Goldstone modes dominate low temperature thermodynamics and are therefore important

to understand. We argued above that XY model exhibits a single Goldstone mode corre-

sponding to the phase θ or equivalently fluctuations of ~φ transverse to its spontaneous value

~φ0.

More generally it is quite important to count and identify Goldstone modes for a broken

symmetry phase. Systems with discrete symmetries (e.g., Ising, or q-states Potts model)

have no Goldstone modes. For systems that break continuous symmetry, usually (but not

always) Goldstone modes can be counted using the so-called G/H counting, where G is the

symmetry group of the Hamiltonian, H is the symmetry group of the spontaneous order

parameter ~φ0, and G/H is a coset space constructed by identifying all the elements of G

related by H. The reason for this protocol is that Goldstone modes are those excitations

under which the free energy is invariant, but also the order parameter transforms nontrivially;

otherwise it is not an excitation.
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FIG. 12: A Mexican-hat potential and its cross-section controlling a continuous phase transition,

illustrated for a two component order parameter Φ = (φ1, φ2) (e.g., the normal-to-superfluid or

XY PM-FM). Massive (gapped) amplitude (Higg’s) and gapless Goldstone mode excitations, re-

spectively correspond to radial and azimuthal fluctuations about Φ0.

FIG. 13: Free energy of XY model for T > Tc and T < Tc

As an example, for O(3) model (arising from e.g., Heisenberg FM), G = O(3), H = O(2)

(corresponding to two-dimensional rotations about ~φ0), and G/H = O(3)/O(2) = S2, a two-

dimensional surface of a three-dimensional ball, whose dimension is clearly 2. Thus, there

are two Goldstone modes for O(3) symmetry breaking transition, corresponding to two Euler

angles of excitations along the surface of a 3d sphere. More generally for an O(N) FM, there
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FIG. 14: Spontaneous symmetry breaking at T < Tc

are dim [O(N)/O(N − 1)] = SN−1 = N − 1. For O(2) symmetric XY model this counting

gives a single Goldstone mode.

We refer to this spontaneous choice of the multi-component order parameter as a “spon-

taneous symmetry breaking”, to be contrasted with the“explicit symmetry breaking”, by e.g.,

an external field. Of course in real materials, some symmetry breaking field, e.g. boundary

of a sample, lattice effects, stray fields, etc will weakly choose the ordering of the order

parameter, ~φ.

4. Tricritical point

As we have seen, φ4 type Landau functionals generically exhibit a second-order transi-

tion, as the reduced temeperature (the quadratic coefficient), t changes sign and two degen-

erate, finite φ0 minima continuous develop. Note, however, that this continuous development

only happens if the quartic coupling, u is positive.

In contrast, for a negative quartic coupling, u < 0, the pure phi4 theory is unstable and

requires us to keep higher order terms in the order parameter, that, generically, is the next

lowest order φ6 term. It is clear from the general form of the resulting φ6 Landau model

for u < 0 and v > 0, that it exhibits a first-order transition at tc ∼ u2 (when the finite φ0

minima become degenerate with φ = 0 one) and a spinoidal at t = 0, when the curvature at

the origin vanishes. Upon increasing u, the nature of transition changes to a second-order

transition at a tricritical point, t = 0, u = 0, as illustrated in Fig.16.
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FIG. 15: A φ6 even Landau model exhibiting a first-order transition for u < 0 and a second-order

transition for u > 0 separated by a tricritical point at t = 0, u = 0.

FIG. 16: A φ6 even Landau model exhibiting a first-order transition for u < 0 and a second-order

transition for u > 0 separated by a tricritical point at t = 0, u = 0.

5. Isotropic-to-Nematic (IN) transition in liquid crystals

Liquid crystals are fascinating systems of anisotropic constituents (typically rode- or

plate-like, though there are quantum liquid crystals of even point-like electrons, driven by

strong frustrated interactions), that exhibit a rich variety of phases intermediate between a

fully-disordered isotropic fluid and fully-ordered crystalline solid. Classical liquid crystals[7,

16] are typically driven by competing orientational and positional entropies, with some most
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common phases illustrated in Fig.17

FIG. 17: Most ubiquitous nematic (orientationally ordered uniaxial fluid), smectic-A and smectic-

C (one-dimensional density wave with, respectively isotropic and polar in-plane fluid orders) liquid

crystal phases and their associated textures in cross-polarized microscopy (N.A. Clark laboratory).

To be concrete we focus on the Isotropic-to-Nematic (IN) liquid crystal transition.[7, 16]

To identify the corresponding order parameter I note that the distinction between isotropic

and nematic fluids is that in the former the rod-like molecules are isotropically distributed,

while in the latter (by the very definition of the nematic phase) they align along some

spontaneously chosen axis (see Fig.17). I note that it is a spontaneous choice of an axis

(headless arrow) and not of a vector (as e.g., in a FM phase) that defines the nematic phase.

This is because nematic axis n̂ ordering is driven by steric molecular interaction. Thus, in

contrast to the Heisenberg model’s exchange interaction, the nematic director interaction is

given by the Lebwohl-Lasher model (biquadratic interaction)[7, 16],

HN = −1

2
K

∑
ij

(n̂i · n̂j)
2, (26)

with not only the Hamiltonian but also the nematic phase invariant under the Z2 symmetry,

n̂ → −n̂.

More macroscopically, the nematic phase is characerized by anisotropic quadrapolar

dielectric tensor εij, that distinguishes it from an optically isotropic fluid, εI
αβ = ε0δαβ. The
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nematic order parameter is thus a tensor

Qαβ = S

(
nαnβ −

1

3
δαβ

)
+ B (mαmβ − `α`β) , (27)

with S 6= 0, B = 0 describing a uniaxial anisotropy along n̂ and S 6= 0, B 6= 0 capturing

the biaxial anisotropy in the m̂ − ˆ̀ plane, transverse to n̂. The Qαβ traceless symmetric

tensor generically exhibits three distinct eigenvalues, controlled by strengths of the uniaxial

and biaxial orders S and B, respectively. As a check, I note that in the isotropic phase,

n̂αn̂β averages to 1
3
δαβ and mαmβ and `α`β have identical averages. Qαβ thus vanishes in

the isotropic phase, nonzero in the nematic phase, and is therefore the characteristic order

parameter of the IN transition.

The corresponding Landau Hamiltonian density must be rotationally invariant, with all

the indices contracted,

H[Qαβ] =
1

2
tQαβQβα −

1

3
wQαβQβγQγα +

1

4
u(QαβQβα)2, (28)

=
1

2
tTr(Q2)− 1

3
wTr(Q3) +

1

4
u[Tr(Q2)]2, (29)

=
1

2
t̃S2 − 1

3
w̃S3 +

1

4
ũS4, (30)

where the last expression was worked out for the uniaxial nematic with B = 0 and I leave

it to you to work out tilde’d coefficients. I note that in fact there appears to be a second

distinct quartic invariants of Q that is possible, namely QαβQβγQγδQδα = Tr(Q4). However,

in 3d these can be shown to be proportional to each other, as I encourage the reader to verify

for herself.

I further note, that, because there is no symmetry under Q → −Q, (with this corre-

sponding to oblate [disks] to prolate [rods] uniaxial order transformation), crucially in 3d,

above Landau theory allows a cubic invariant, Tr(Q3) ∝ S3. Thus, based on earlier dis-

cussion of the liquid-gas transition, our analysis generically predicts a first-order IN phase

transition, that is only continuous if w is fine-tuned to zero. In contrast in two-dimensions

the cubic term is not allowed (i.e., vanishes, as I invite the reader to demonstrate for herself)

and the 2d IN transition is thus generically second order, isomorphic to the XY universality

class.

Finally, I note, that by G/H counting a 3d Nematic is characterized by two Goldstone

modes. However, although locally the coset space looks like a two-dimensional sphere,
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globally it is the RP 2 = S2/Z2 manifold, i.e., a two-dimensional sphere with antipodal

points identified due to headless arrow (n̂αn̂β) nature of the nematic order parameter.

6. Liquid-to-crystal (L-Cr) phase transition

A feature that distinguishes a 3d crystal from a fluid is the existence of 3d periodicity

of the density, n. Thus, a crystal can be thought of as a liquid that develops a three

dimensional mass density wave. Complementary to this, is a reciprocal, momentum (Fourier)

space description, in which the distinguishing crystal feature is the appearance of nontrivial

Fourier coefficients nG of the mass density,

n(x) =
∑
G

nGeiG·x, (31)

where G span the reciprocal lattice of the crystal. nG are thus a set of order parameters for

crystalization.

The corresponding Landau Hamiltonian that describes the L-Cr transition must be trans-

lationally invariant and is thus given by

H[nG] =
1

2
t|nG|2 −

1

3
w

′∑
{Gvi}

nG1nG2nG3 +
1

4
u

′∑
{Gvi}

nG1nG2nG3nG4 + . . . , (32)

where the sums can be limited to a set of fundamental reciprocal lattice vectors, and prime

denotes a constraint,
∑

i Gi = 0 of momentum conservation. Because of the cubic invariant,

allowed in three dimensions (but not in 2d), generic crystallization transition is first-order.

III. BREAKDOWN OF LANDAU THEORY

One of the crucial ingredients of Landau Theory is that it neglects fluctuations of the

order parameter, simply minimizing the Landau functional, rather than tracing over the

fluctuating order parameter. Indeed as the transition is approached e.g., from below Tc,

the correlation length ξ(T ) diverges and thermal excitations become larger and larger. A

natural, crucial question is on the limit of validity of this MF approximation that neglects

these excitations. Namely, what is the criterion for failure of Landau MFT theory? That

it can indeed fail sufficiently close to a critical point is clear from the contrast between

experimental and MFT exponents, as indicated in Fig.10.
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As we will see (particularly when we proceed with a full field theoretic description) there

are number of ways to assess the validity of Landau MF theory. The simplest is to note,

that, clearly a MFT approximation fails when the condensation free-energy, Fexcit (Fig.19) of

the excitation “bubble” of size set by the correlation length ξ ∼ |t|−ν , (illustrated in Fig.18)

is small compared to thermal energy, kBT .

FIG. 18: Excitation “bubble” in the FM ordered state consisting of a region of overturned spins.

FIG. 19: Condensation free energy, ∆f at a second-order phase transition.

To this end I note that the excitation free energy is given by

Fexcit(t) ' ξ(t)d∆f(t) ∼ ξd
0 |t|−dνt2/u, (33)

exhibiting a competion as |t| → 0. Namely, as Tc is approached, the size of the excitation

bubble ξ(t) grows, making it more costly, but at the same time the condensation free-energy

density vanishes as t2. To obtain the Ginzburg criterion on |t∗|, below which Landau MFT

fails, we equate above excitation free energy to thermal energy, ξd
0 |t∗|2−dν/u = kBT , taking
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ν = 1/2 and obtaining,

t∗ ≈
(

kBTcu

ξd
0

)2/(4−d)

. (34)

Thus, we conclude that for d > duc = 4, sufficiently close to Tc the excitation free-energy

dominates over thermal energy, fluctuations can be ignored, and MFT approximaton is valid.

In contrast, for d < duc = 4 (where duc denotes the dimension below which MFT fails), the

excitation free-energy vanishes and Landau MFT fails sufficiently close to Tc, within the

Ginzburg region given by |t| < |t∗. I note that, as expected, the size of the Ginzburg region,

t∗ increases with increasing interaction strength u and strength of fluctuations kBTc.

For d < duc, within the Ginzburg region, superuniversality of MFT fails, and singularities

crossover to those characterized by the universality class specific to the system. The latter

is determined by the dimension of space, symmetry class, nature of the order parameter and

in particular the number components, N . Our next goal is to utilize methods of field theory

and renormalization group, introduced by Widom, Kadanoff, Migdal, and developed as a

full-fledged calculational tool by Ken Wilson and Michael Fisher, to calculate the nontrivial

critical behavior beyond Landau’s MFT.
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